Giả sử chi phí đặt hàng và vận chuyển \[C\] (đơn vị: triệu đồng) của một linh kiện được sử dụng trong sản xuất một sản phẩm được xác định theo công thức
\(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,x \ge 1\).
Trong đó \(x\) là số linh kiện được đặt hàng và vận chuyển. Tìm \(x\) để chi phí đặt hàng và vận chuyển cho mỗi linh kiện trên là nhỏ nhất.
Giả sử chi phí đặt hàng và vận chuyển \[C\] (đơn vị: triệu đồng) của một linh kiện được sử dụng trong sản xuất một sản phẩm được xác định theo công thức
\(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,x \ge 1\).
Trong đó \(x\) là số linh kiện được đặt hàng và vận chuyển. Tìm \(x\) để chi phí đặt hàng và vận chuyển cho mỗi linh kiện trên là nhỏ nhất.
Quảng cáo
Trả lời:

Xét hàm số \(C = \frac{{19200000}}{{{x^2}}} + \frac{{27x}}{{x + 3000}},\,\,\left( {x \ge 1} \right)\) là chi phí đặt hàng và vận chuyển một linh kiện
Ta có \(C' = - \frac{{38400000}}{{{x^3}}} + \frac{{81000}}{{{{\left( {x + 3000} \right)}^2}}}\).
Cho \(C' = 0 \Leftrightarrow 12800{\left( {x + 3000} \right)^2} - 27{x^3} = 0 \Leftrightarrow x = 2400\).
Lập BBT cho hàm số trên nửa khoảng \(\left[ {1; + \infty } \right)\) ta thu được \({C_{\min }}\) khi \(x = 2400\).
Đáp án: 2400.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Từ bảng biến thiên ta có: Hàm số đạt cực đại tại điểm \(x = - 3\) và đạt cực tiểu tại \(x = - 1\).
b) Đúng. Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) = + \infty \) và \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) = - \infty \) nên đồ thị hàm số nhận đường thẳng \(x = - 2\) làm tiệm cận đứng.
c) Sai. Từ bảng biến thiên ta có: Hàm số nghịch biến trên khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2; - 1} \right)\). Hàm số không xác định tại\(x = - 2\).
d) Đúng. Từ bảng biến thiên ta có: \(f(x) = 0\) vô nghiệm nên đồ thị hàm số không có điểm chung với trục hoành.
Lời giải
a) Đúng. Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).
b) Sai. Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\)
Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng)
Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ)
Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng)
Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
c) Đúng. Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\) (nghìn đồng).
d) Đúng. \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)
Dấu “=” xảy ra khi \(x = 20\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.