Câu hỏi:

29/09/2025 233 Lưu

Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\)\(A\), \(B\) là hai điểm cực trị của \(\left( C \right)\).

a) \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).

b) \(A\)\(B\) nằm ở hai phía của trục tung.

c) Đường thẳng \(AB\)có phương trình là \(y = 2x + 1\).

d) \(A\)\(B\) đối xứng nhau qua đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) suy ra \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).

Do đó a) đúng.

b) \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\end{array} \right.\)

\(y\left( { - 3} \right) =  - 3\); \(y\left( { - 1} \right) = 1\)

Suy ra \(A\left( { - 3\,;\, - 3} \right)\) và \(B\left( { - 1\,;\,1} \right)\)

Do \({x_A}.{x_B} = 3 > 0\) nên \(A\) và \(B\) nằm ở cùng một phía của trục tung.

Do đó b) sai.

c) Ta có \(\overrightarrow {AB}  = \left( {2\,;\,4} \right)\)

Suy ra đường thẳng \(AB\) có phương trình là \( - 2\left( {x + 1} \right) + \left( {y - 1} \right) = 0\)\( \Leftrightarrow y = 2x + 3\).

Do đó c) sai.

d) Đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\) nên \(\Delta \) có vtpt \(\overrightarrow {{n_\Delta }}  = \left( {1\,;\,2} \right)\).

\(\overrightarrow {AB}  = \left( {2\,;\,4} \right)\)

Suy ra \(\overrightarrow {{n_\Delta }} \) và \(\overrightarrow {AB} \) cùng phương với nhau. Do đó \(AB \bot \Delta \).

Ta có \(I\left( { - 2\,;\, - 1} \right)\) là trung điểm của đoạn thẳng \(AB\) và \(I \in \Delta \).

Vậy \(A\) và \(B\) đối xứng nhau qua đường thẳng \(\Delta \).

Do đó d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 1.

Hàm số xác định trên \(\left[ {0;\pi } \right]\).

Ta có \[y =  - \frac{x}{4} + {\cos ^2}\frac{x}{2} =  - \frac{x}{4} + \frac{1}{2} + \frac{1}{2}\cos x\].

Suy ra \[y' =  - \frac{1}{4} - \frac{1}{2}\sin x\].

\[y' = 0 \Leftrightarrow  - \frac{1}{4} - \frac{1}{2}\sin x = 0 \Leftrightarrow \sin x =  - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Vì \(x \in \left[ { - \pi ;\pi } \right]\) nên \(x \in \left\{ { - \frac{{5\pi }}{6}; - \frac{\pi }{6}} \right\}\).

Bảng biến thiên

Hàm số \[y =  - \frac{x}{4} + {\cos ^2}\frac{x}{2}\] có bao nhiêu điểm cực đại trên đoạn \(\left[ { - \pi ;\pi } \right]\)? (ảnh 1)

Vậy hàm số có 1 điểm cực đại.

Lời giải

Đáp án: a) Đ, b) S, c) S, d) S

a) Với \(m = 0\) hàm số trở thành \(y = {\log _2}x\) là hàm số đồng biến trên khoảng \(\left( {0;\, + \infty } \right)\).

b) Với \(m = 1\) hàm số trở thành \(y = {\log _2}\left( {{x^2} + x + 1} \right)\) có \(D = \mathbb{R}\)

Khi đó : \(y' = \frac{{2x + 1}}{{\left( {{x^2} + x + 1} \right)\ln 2}} = 0 \Leftrightarrow x =  - \frac{1}{2}\) .

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;\, - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2};\, + \infty } \right)\) .

c) \(y' = \frac{{2mx + 1}}{{\left( {m{x^2} + x + m} \right).\ln 2}}\)

d) Hàm số có \(D = \mathbb{R} \Leftrightarrow m{x^2} + x + m > 0,\,\forall x \in \mathbb{R}\)

+) \(m = 0\) không thoả mãn.

+) \(m \ne 0\) hàm số có \(D = \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta  = 1 - 4{m^2} < 0\end{array} \right. \Leftrightarrow m > \frac{1}{2}\) .

Khi đó, hàm số đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\)\( \Leftrightarrow \left( {2; + \infty } \right) \subset \left( { - \frac{1}{{2m}};\, + \infty } \right) \Leftrightarrow  - \frac{1}{{2m}} \le 2 \Leftrightarrow m \ge  - \frac{1}{4}\)

Vậy với \(m > \frac{1}{2}\) thì hàm số có tập xác định \(D = \mathbb{R}\) và đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).

Câu 3

A. \(\left( { - \infty ; - 3} \right)\).                                
B. \(\left( { - 1;3} \right)\).                                
C. \(\left( { - 3;1} \right)\).                                
D. \(\left( {1;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[5\].                                  
B. \[3\].                               
C. \[4\].                                       
D. \[6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP