Cho hàm số \(y = \sqrt {{x^2} - 2mx + 9} \)
a) \(m = 0\) hàm số không có cực trị.
b) \(m = 1\) hàm số đạt cực tiểu tại \(x = 1\).
c) \(y' = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\).
d) Có 7 giá trị \(m\) nguyên để hàm số có cực trị.
Cho hàm số \(y = \sqrt {{x^2} - 2mx + 9} \)
a) \(m = 0\) hàm số không có cực trị.
b) \(m = 1\) hàm số đạt cực tiểu tại \(x = 1\).
c) \(y' = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\).
d) Có 7 giá trị \(m\) nguyên để hàm số có cực trị.
Quảng cáo
Trả lời:
Đáp án: a) S, b) Đ, c) Đ, d) Đ
a) Với \(m = 0\) hàm số trở thành: \(y = \sqrt {{x^2} + 9} \) có \(y' = \frac{x}{{\sqrt {{x^2} + 9} }} = 0 \Leftrightarrow x = 0\).
Hàm số có cực trị tại \(x = 0\).
b) Với \(m = 1\) hàm số trở thành: \(y = \sqrt {{x^2} - 2x + 9} \) có \(y' = \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 9} }} = 0 \Leftrightarrow x = 1\).
\(y'\) đổi dấu từ âm sang dương khi đi qua \(x = 1\) nên hàm số đạt cực tiểu tại \(x = 1\).
c) \(y' = \frac{{{{\left( {{x^2} - 2mx + 9} \right)}^\prime }}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{2x - 2m}}{{2\sqrt {{x^2} - 2mx + 9} }} = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\)
d) Điều kiện: \[{x^2} - 2mx + 9 \ge 0\left( * \right)\]
\[y' = \frac{{x - m}}{{\sqrt {{x^2} - 2mx + 9} }}\],
\[y' = 0\]\[ \Leftrightarrow x - m = 0\]\[ \Leftrightarrow x = m\].
Đồ thị hàm số có cực trị \[ \Leftrightarrow x = m\] thỏa mãn \[ \Leftrightarrow {m^2} - 2{m^2} + 9 \ge 0\]\[ \Leftrightarrow - 3 \le m \le 3\].
Vậy có 7 giá trị nguyên của \(m\) để hàm số đã cho có cực trị.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 1.
Hàm số xác định trên \(\left[ {0;\pi } \right]\).
Ta có \[y = - \frac{x}{4} + {\cos ^2}\frac{x}{2} = - \frac{x}{4} + \frac{1}{2} + \frac{1}{2}\cos x\].
Suy ra \[y' = - \frac{1}{4} - \frac{1}{2}\sin x\].
\[y' = 0 \Leftrightarrow - \frac{1}{4} - \frac{1}{2}\sin x = 0 \Leftrightarrow \sin x = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Vì \(x \in \left[ { - \pi ;\pi } \right]\) nên \(x \in \left\{ { - \frac{{5\pi }}{6}; - \frac{\pi }{6}} \right\}\).
Bảng biến thiên
![Hàm số \[y = - \frac{x}{4} + {\cos ^2}\frac{x}{2}\] có bao nhiêu điểm cực đại trên đoạn \(\left[ { - \pi ;\pi } \right]\)? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/16-1759132270.png)
Vậy hàm số có 1 điểm cực đại.
Lời giải
a) Ta có \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) suy ra \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).
Do đó a) đúng.
b) \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\end{array} \right.\)
\(y\left( { - 3} \right) = - 3\); \(y\left( { - 1} \right) = 1\)
Suy ra \(A\left( { - 3\,;\, - 3} \right)\) và \(B\left( { - 1\,;\,1} \right)\)
Do \({x_A}.{x_B} = 3 > 0\) nên \(A\) và \(B\) nằm ở cùng một phía của trục tung.
Do đó b) sai.
c) Ta có \(\overrightarrow {AB} = \left( {2\,;\,4} \right)\)
Suy ra đường thẳng \(AB\) có phương trình là \( - 2\left( {x + 1} \right) + \left( {y - 1} \right) = 0\)\( \Leftrightarrow y = 2x + 3\).
Do đó c) sai.
d) Đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\) nên \(\Delta \) có vtpt \(\overrightarrow {{n_\Delta }} = \left( {1\,;\,2} \right)\).
\(\overrightarrow {AB} = \left( {2\,;\,4} \right)\)
Suy ra \(\overrightarrow {{n_\Delta }} \) và \(\overrightarrow {AB} \) cùng phương với nhau. Do đó \(AB \bot \Delta \).
Ta có \(I\left( { - 2\,;\, - 1} \right)\) là trung điểm của đoạn thẳng \(AB\) và \(I \in \Delta \).
Vậy \(A\) và \(B\) đối xứng nhau qua đường thẳng \(\Delta \).
Do đó d) đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.