Câu hỏi:

29/09/2025 41 Lưu

 Cho hàm số \(y = f(x)\) có bảng biến thiên như hình dưới:

 Cho hàm số \(y = f(x)\) có bảng biến thiên như hình dưới:   Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 4x + 1} \right)\) là: 	A. \(3\).	B. \(2\).	C. \(1\).	D. \(5\). (ảnh 1)

Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 4x + 1} \right)\) là:                    

A. \(3\).                                   
B. \(2\).                                   
C. \(1\).           
D. \(5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(g\left( x \right) = f\left( {{x^2} - 4x + 1} \right)\).

\( \Rightarrow g'\left( x \right) = {\left( {{x^2} - 4x + 1} \right)^\prime }.f'\left( {{x^2} - 4x + 1} \right) = 2\left( {x - 2} \right).f'\left( {{x^2} - 4x + 1} \right)\).

Ta có \[g'\left( x \right) = 0 \Leftrightarrow 2\left( {x - 2} \right).f'\left( {{x^2} - 4x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\{x^2} - 4x + 1 =  - 1\\{x^2} - 4x + 1 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 2 - \sqrt 2 \\x = 2 + \sqrt 2 \\x = 2 - \sqrt 6 \\x = 2 + \sqrt 6 \end{array} \right.\].

Ta có bảng xét dấu của \(g'\left( x \right)\).

 Cho hàm số \(y = f(x)\) có bảng biến thiên như hình dưới:   Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 4x + 1} \right)\) là: 	A. \(3\).	B. \(2\).	C. \(1\).	D. \(5\). (ảnh 2)

Dựavào bảng biến thiên ta thấy hàm số \(g\left( x \right) = f\left( {{x^2} - 4x + 1} \right)\) có 5 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2024\).                          
B. \(2019\).                        
C. \(2020\).                                
D. \(0\).

Lời giải

TXĐ: \(D = \mathbb{R}\).

Có \(y = \sqrt {{x^2} + 1}  - mx - 1 \Rightarrow y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\).

Theo yêu cầu bài toán: \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m \ge 0{\rm{, }}\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le \frac{x}{{\sqrt {{x^2} + 1} }},{\rm{ }}\forall x \in \mathbb{R}{\rm{ }}\left( 1 \right)\).

Xét hàm số \(g\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\) với \[x \in \mathbb{R}\]. Ta có \(g'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,{\rm{ }}\forall x \in \mathbb{R}\).

Bảng biến thiên

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1}  - mx - 1\) đồng biến trên \(\mathbb{R}\). A. \(2024\).	B. \(2019\).	C. \(2020\).	D. \(0\). (ảnh 1)

Từ \(\left( 1 \right) \Rightarrow m \le  - 1\) mà \(\left\{ \begin{array}{l}m \in \left[ { - 2024;2024} \right]\\m \in \mathbb{Z}\end{array} \right.\) nên có 2024 giá trị nguyên.

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là \(3 - 1 = 2.\)

c) Hàm số  \(y = f(x)\)có hai cực trị là \(x =  \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b =  - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 2\\b = 1\end{array} \right. \Rightarrow d:y =  - 2x + 1\]

Câu 4

A. \(\left( {1; + \infty } \right)\).                                
B. \(\left( {\frac{1}{2};1} \right)\).                                             
C. \(\left( {0;\frac{1}{2}} \right)\).                                             
D. \(\left( { - \infty ;\frac{1}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 2; - 1} \right)\).                                       
B. \(\left( { - 1;\frac{3}{2}} \right)\).  
C. \(\left( { - 1;1} \right)\).                                
D. \(\left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP