Câu hỏi:

29/09/2025 175 Lưu

Cho hàm số \(y = \frac{1}{3}{x^3} + \left( {m + 1} \right){x^2} + \left( {{m^2} + 2m} \right)x - 3\), với \(m\) là tham số

a) Với mọi m hàm số luôn có hai điểm cực trị.

b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng \(2\).

c) Không tồn tại giá trị của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R}\).

d) Hàm số nghịch biến trên \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(m \ge - 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng:  Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt

Nên hàm số luôn có hai điểm cực trị.

b) Đúng: Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - m\) và \({x_2} =  - m - 2\).

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 1)

Hàm   số luôn nghịch biến trên khoảng \(\left( { - m - 2; - m} \right)\).

Ta có: \( - m - ( - m - 2) = 2\) 

c) Đúng: Ta có bảng biến thiên

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 2)

Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R}\).

d) Sai: Bảng biến thiên

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 3)

Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi

\(\left\{ \begin{array}{l} - m - 2 \le  - 1\\ - m \ge 1\end{array} \right. \Leftrightarrow m =  - 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2024\).                          
B. \(2019\).                        
C. \(2020\).                                
D. \(0\).

Lời giải

TXĐ: \(D = \mathbb{R}\).

Có \(y = \sqrt {{x^2} + 1}  - mx - 1 \Rightarrow y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\).

Theo yêu cầu bài toán: \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m \ge 0{\rm{, }}\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le \frac{x}{{\sqrt {{x^2} + 1} }},{\rm{ }}\forall x \in \mathbb{R}{\rm{ }}\left( 1 \right)\).

Xét hàm số \(g\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\) với \[x \in \mathbb{R}\]. Ta có \(g'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,{\rm{ }}\forall x \in \mathbb{R}\).

Bảng biến thiên

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1}  - mx - 1\) đồng biến trên \(\mathbb{R}\). A. \(2024\).	B. \(2019\).	C. \(2020\).	D. \(0\). (ảnh 1)

Từ \(\left( 1 \right) \Rightarrow m \le  - 1\) mà \(\left\{ \begin{array}{l}m \in \left[ { - 2024;2024} \right]\\m \in \mathbb{Z}\end{array} \right.\) nên có 2024 giá trị nguyên.

Lời giải

Diện tích của đáy hộp là: \(S = \frac{V}{h} = \frac{{96.000}}{{60}} = 1600c{m^2} = 0,16{m^2}\)

Gọi chiều dài cạnh đáy của hộp là \(x,\left( {x > 0,m} \right)\)

Chiều rộng của hộp là \(\frac{{0,16}}{x}\)

Gọi \(F\left( x \right)\) là hàm chi phí để làm để cá.

Chi phí để hoàn thành bể cá:

\[\begin{array}{l}F\left( x \right) = 0,16 \times 100.000 + 2.0,6x.70.000 + 2.0,6.\frac{{0,16}}{x}.70.000\\ = 16.000 + 48.000x + \frac{{13440}}{x}\end{array}\]

Câu toán trở thành tìm x để F đạt GTNN.

\(\begin{array}{l}F'\left( x \right) = 84.000 - \frac{{13440}}{{{x^2}}}\\F'\left( x \right) = 0 \Leftrightarrow 84.000 - \frac{{13440}}{{{x^2}}} = 0 \Leftrightarrow x = 0,4\end{array}\)

Bảng biến thiên:

Tính chi phí thấp nhất để hoàn thành bể cá. (ảnh 1)

Vậy chi phí thấp nhất để hoàn thành bể cá là: 83.200 đồng.

Câu 4

A. \(\left( {1; + \infty } \right)\).                                
B. \(\left( {\frac{1}{2};1} \right)\).                                             
C. \(\left( {0;\frac{1}{2}} \right)\).                                             
D. \(\left( { - \infty ;\frac{1}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 2; - 1} \right)\).                                       
B. \(\left( { - 1;\frac{3}{2}} \right)\).  
C. \(\left( { - 1;1} \right)\).                                
D. \(\left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP