Cho hàm số \(y = \frac{1}{3}{x^3} + \left( {m + 1} \right){x^2} + \left( {{m^2} + 2m} \right)x - 3\), với \(m\) là tham số
a) Với mọi m hàm số luôn có hai điểm cực trị.
b) Hàm số luôn nghịch biến trên khoảng có độ dài bằng \(2\).
c) Không tồn tại giá trị của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R}\).
d) Hàm số nghịch biến trên \(\left( { - 1;\,1} \right)\) khi và chỉ khi \(m \ge - 1\).
Quảng cáo
Trả lời:
a) Đúng: Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt
Nên hàm số luôn có hai điểm cực trị.
b) Đúng: Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - m\) và \({x_2} = - m - 2\).

Hàm số luôn nghịch biến trên khoảng \(\left( { - m - 2; - m} \right)\).
Ta có: \( - m - ( - m - 2) = 2\)
c) Đúng: Ta có bảng biến thiên

Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R}\).
d) Sai: Bảng biến thiên

Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi
\(\left\{ \begin{array}{l} - m - 2 \le - 1\\ - m \ge 1\end{array} \right. \Leftrightarrow m = - 1\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
TXĐ: \(D = \mathbb{R}\).
Có \(y = \sqrt {{x^2} + 1} - mx - 1 \Rightarrow y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\).
Theo yêu cầu bài toán: \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m \ge 0{\rm{, }}\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le \frac{x}{{\sqrt {{x^2} + 1} }},{\rm{ }}\forall x \in \mathbb{R}{\rm{ }}\left( 1 \right)\).
Xét hàm số \(g\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\) với \[x \in \mathbb{R}\]. Ta có \(g'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,{\rm{ }}\forall x \in \mathbb{R}\).
Bảng biến thiên
![Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1} - mx - 1\) đồng biến trên \(\mathbb{R}\). A. \(2024\). B. \(2019\). C. \(2020\). D. \(0\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1759133862.png)
Từ \(\left( 1 \right) \Rightarrow m \le - 1\) mà \(\left\{ \begin{array}{l}m \in \left[ { - 2024;2024} \right]\\m \in \mathbb{Z}\end{array} \right.\) nên có 2024 giá trị nguyên.
Lời giải
Diện tích của đáy hộp là: \(S = \frac{V}{h} = \frac{{96.000}}{{60}} = 1600c{m^2} = 0,16{m^2}\)
Gọi chiều dài cạnh đáy của hộp là \(x,\left( {x > 0,m} \right)\)
Chiều rộng của hộp là \(\frac{{0,16}}{x}\)
Gọi \(F\left( x \right)\) là hàm chi phí để làm để cá.
Chi phí để hoàn thành bể cá:
\[\begin{array}{l}F\left( x \right) = 0,16 \times 100.000 + 2.0,6x.70.000 + 2.0,6.\frac{{0,16}}{x}.70.000\\ = 16.000 + 48.000x + \frac{{13440}}{x}\end{array}\]
Câu toán trở thành tìm x để F đạt GTNN.
\(\begin{array}{l}F'\left( x \right) = 84.000 - \frac{{13440}}{{{x^2}}}\\F'\left( x \right) = 0 \Leftrightarrow 84.000 - \frac{{13440}}{{{x^2}}} = 0 \Leftrightarrow x = 0,4\end{array}\)
Bảng biến thiên:

Vậy chi phí thấp nhất để hoàn thành bể cá là: 83.200 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



