Câu hỏi:

29/09/2025 111 Lưu

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = \left( {x - 6} \right)\left( {{x^2} + 2x - 8} \right),\forall x \in \mathbb{R}.\]Có bao nhiêu giá trị nguyên dương của tham số \[m\]để hàm số \[g\left( x \right) = \left( {\left| {{x^3} + 3{x^2} + 8x + 6} \right| + m} \right)\]có ít nhất 3 điểm cực trị?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có : \[f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6\\x =  - 4\\x = 2\end{array} \right.\]

Xét \[u\left( x \right) = {x^3} + 3{x^2} + 8x + 6\]có \[u'\left( x \right) = 3{x^2} + 6x + 8 > 0\forall x \in \mathbb{R}\]

Do đó số điểm của trị của hàm số \[g\left( x \right) = \left( {\left| {{x^3} + 3{x^2} + 8x + 6} \right| + m} \right)\] bằng số điểm của trị của hàm số: \[h\left( x \right) = \left( {\left| x \right| + m} \right)\].

Ta có : \(h'\left( x \right) = \frac{x}{{\left| x \right|}}f'\left( {\left| x \right| + m} \right) = 0 \Rightarrow \left[ \begin{array}{l}x = 0\left( 1 \right)\\f'\left( {\left| x \right| + m} \right) = 0\left( 2 \right)\end{array} \right.\)

+) Xét \(\left( 1 \right):x = 0\) làm cho \(h'\left( x \right)\) đổi dấu và xác định với \[y = f\left( x \right)\] nên \(x = 0\)là 1 điểm cực trị.

+) Xét \(\left( 2 \right) \Leftrightarrow f'\left( {\left| x \right| + m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\left| x \right| + m = 6\\\left| x \right| + m =  - 4\\\left| x \right| + m = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left| x \right| - 6 =  - m\\\left| x \right| - 2 =  - m\\\left| x \right| + 4 =  - m\end{array} \right.\left( * \right)\)

Để hàm số \[h\left( x \right)\]có ít nhất 3 điểm cực trị \[ \Leftrightarrow \left( * \right)\]có ít nhất 2 nghiệm đơn. Biểu diễn vế trái của \[\left( * \right)\] trên cùng một hệ trục tọa độ ta có: \( - m >  - 6 \Leftrightarrow m < 6\). Mà \(m\)nguyên dương nên có 5 giá trị \(m\)thỏa mãn ycbt.

Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = \left( {x - 6} \right)\left( {{x^2} + 2x - 8} \right),\forall x \in \mathb (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2024\).                          
B. \(2019\).                        
C. \(2020\).                                
D. \(0\).

Lời giải

TXĐ: \(D = \mathbb{R}\).

Có \(y = \sqrt {{x^2} + 1}  - mx - 1 \Rightarrow y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\).

Theo yêu cầu bài toán: \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m \ge 0{\rm{, }}\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le \frac{x}{{\sqrt {{x^2} + 1} }},{\rm{ }}\forall x \in \mathbb{R}{\rm{ }}\left( 1 \right)\).

Xét hàm số \(g\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\) với \[x \in \mathbb{R}\]. Ta có \(g'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,{\rm{ }}\forall x \in \mathbb{R}\).

Bảng biến thiên

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1}  - mx - 1\) đồng biến trên \(\mathbb{R}\). A. \(2024\).	B. \(2019\).	C. \(2020\).	D. \(0\). (ảnh 1)

Từ \(\left( 1 \right) \Rightarrow m \le  - 1\) mà \(\left\{ \begin{array}{l}m \in \left[ { - 2024;2024} \right]\\m \in \mathbb{Z}\end{array} \right.\) nên có 2024 giá trị nguyên.

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là \(3 - 1 = 2.\)

c) Hàm số  \(y = f(x)\)có hai cực trị là \(x =  \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b =  - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 2\\b = 1\end{array} \right. \Rightarrow d:y =  - 2x + 1\]

Câu 4

A. \(\left( {1; + \infty } \right)\).                                
B. \(\left( {\frac{1}{2};1} \right)\).                                             
C. \(\left( {0;\frac{1}{2}} \right)\).                                             
D. \(\left( { - \infty ;\frac{1}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 2; - 1} \right)\).                                       
B. \(\left( { - 1;\frac{3}{2}} \right)\).  
C. \(\left( { - 1;1} \right)\).                                
D. \(\left( {1;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP