Phương trình đường tiệm cận ngang của đồ thị hàm số \(y = x - \sqrt {{x^2} + 2x + 3} \) là
Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt {{x^2} + 2x + 3} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x - 3}}{{x + \sqrt {{x^2} + 2x + 3} }}\).
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 - \frac{3}{x}}}{{1 + \sqrt {1 + \frac{2}{x} + \frac{3}{{{x^2}}}} }} = - 1\).
Vậy phương trình đường tiệm cận của đồ thị hàm số là \(y = - 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
TXĐ: \(D = \mathbb{R}\).
Ta có: \(y = {x^3} - 3{x^2} - 1\)\( \Rightarrow \)\(y' = 3{x^2} - 6x\).
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Ta có \(y( - 2) = - 21\) ; \(y(0) = - 1\);\(y(1) = - 3\)
Vậy hàm số\(y = {x^3} - 3{x^2} - 1\) đạt giá trị lớn nhất tại điểm \(x = 0\) với \(y(0) = - 1\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

