Gọi \(M,\) \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) trên đoạn \(\left[ {3\,;\,5} \right].\) Khi đó \(M - m\) bằng
Quảng cáo
Trả lời:

Tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
\(y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\,\forall x \in D\).
Ta có \(y\left( 3 \right) = 2,\) \(y\left( 5 \right) = \frac{3}{2}.\)
Vậy \(M - m = 2 - \frac{3}{2} = \frac{1}{2}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Tập xác định \(D = \mathbb{R}\).
Đặt \(t = {\cos ^2}x,\) \(t \in \left[ {0\,;\,1} \right]\).
Hàm số viết lại \(y = {t^2} - t + 4\)
\(y' = 2t - 1\)
\(y' = 0 \Leftrightarrow t = \frac{1}{2}\)
Ta có \(y\left( 0 \right) = 4,\) \(y\left( 1 \right) = 4,\) \(y\left( {\frac{1}{2}} \right) = \frac{{15}}{4}\).
Vậy giá trị lớn nhất là 4.
Câu 2
Lời giải
Ta có \(y' = \frac{{2x}}{{\left( {{x^2} + 4} \right)\ln 2}} = 0 \Rightarrow x = 0\).
Khi đó: \(y\left( { - 2} \right) = {\log _2}8 = 3;\,\,\,y\left( 0 \right) = {\log _2}4 = 2;\,\,\,y\left( 5 \right) = {\log _2}29\).
Vậy giá trị lớn nhất của hàm số trên đoạn \[\left[ { - 2;\,5} \right]\] là \({\log _2}29\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.