Câu hỏi:

29/09/2025 10 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ { - 3;2} \right]\) và có bảng biến thiên như hình dưới đây. Gọi \(M\)\(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left[ { - 1;2} \right]\). Giá trị của \(M + m\) bằng bao nhiêu ?

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ { - 3;2} \right]\) và có bảng biến thiên như hình dưới đây. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left[ { - 1;2} \righ (ảnh 1)

A. \(3\).                      
B. \(2\).                    
C. \(1\).                           
D. \(4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[M = \mathop {max}\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) = 3\] và \(m = \mathop {min}\limits_{\left[ { - 1;2} \right]} \,f\left( x \right) = f\left( 0 \right) = 0\).

Vậy \(M + m = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: \(0,37\)

-  Hàm số \(g(x) = \frac{{\ln x}}{x}\) liên tục trên đoạn \([1;4]\)

Ta có: \({g^\prime }(x) = \frac{{1 - \ln x}}{{{x^2}}}\). Khi đó, trên khoảng \((1;4),{g^\prime }(x) = 0\) khi \(x = e\).

\(g(1) = 0,g(e) = \frac{1}{e},g(4) = \frac{{\ln 4}}{4} = \frac{{\ln 2}}{2}\).

Vậy \(\mathop {\max }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e},\mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = 0 \Rightarrow \mathop {\max }\limits_{\left[ {1;4} \right]} g(x) + \mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e} \approx 0,37\).

Câu 3

A. \(e - \ln 2 - \frac{1}{2}\).                      
B. \(e - 1\).                             
C. \(\ln 2 - \frac{1}{2}\).            
D. \(e - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP