Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
![Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: Giá trị lớn nhất của hàm số \(y = f\left( x \right)\)trên đoạn \(\left[ {0;2} \right]\) bằng A. \(1\). B. \(3\). C. \(0\). D. \(2\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/4-1759148815.png)
Giá trị lớn nhất của hàm số \(y = f\left( x \right)\)trên đoạn \(\left[ {0;2} \right]\) bằng
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Quảng cáo
Trả lời:

Dựa vào bảng biến thiên ta thấy trên đoạn \(\left[ {0;2} \right]\) giá trị lớn nhất của hàm số \(y = f\left( x \right)\) bằng\(3\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị ta có \(\mathop {max}\limits_{{\rm{[}} - 1;2]} y = 2\)
Lời giải
Đáp số: \(0,37\)
- Hàm số \(g(x) = \frac{{\ln x}}{x}\) liên tục trên đoạn \([1;4]\)
Ta có: \({g^\prime }(x) = \frac{{1 - \ln x}}{{{x^2}}}\). Khi đó, trên khoảng \((1;4),{g^\prime }(x) = 0\) khi \(x = e\).
\(g(1) = 0,g(e) = \frac{1}{e},g(4) = \frac{{\ln 4}}{4} = \frac{{\ln 2}}{2}\).
Vậy \(\mathop {\max }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e},\mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = 0 \Rightarrow \mathop {\max }\limits_{\left[ {1;4} \right]} g(x) + \mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e} \approx 0,37\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.