Giá trị lớn nhất của hàm số \(f\left( x \right) = \sin x + \cos 2x\) trên \(\left[ {0;\pi } \right]\) là …
Quảng cáo
Trả lời:

Đáp số: \(1,125\)
Hàm số \(f\left( x \right) = \sin x + \cos 2x\) liên tục trên \(\left[ {0;\pi } \right]\)
\(f\left( x \right) = \sin x + \cos 2x\)\( = \sin x + 1 - 2{\sin ^2}x\)
Đặt \(\sin x = t\) . Vì \(x \in \left[ {0;\pi } \right]\) nên \(t \in \left[ {0;1} \right]\)
Bài toán trở thành: Tìm giá trị lớn nhất của hàm số \(h\left( t \right) = - 2{t^2} + t + 1\) trên \(\left[ {0;1} \right]\)
Hàm số \(h\left( t \right) = - 2{t^2} + t + 1\) liên tục trên \(\left[ {0;1} \right]\)
\(h\left( t \right) = - 2{t^2} + t + 1\), \(h'\left( t \right) = - 4t + 1\)
\(h'\left( t \right) = 0\)\( \Leftrightarrow t = \frac{1}{4}\)
\(h\left( 0 \right) = 1\), \(h\left( 1 \right) = 0\), \(h\left( {\frac{1}{4}} \right) = \frac{9}{8}\)
Vậy \(\mathop {\max }\limits_{\left[ {0;1} \right]} h\left( t \right) = \frac{9}{8}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: \(0,37\)
- Hàm số \(g(x) = \frac{{\ln x}}{x}\) liên tục trên đoạn \([1;4]\)
Ta có: \({g^\prime }(x) = \frac{{1 - \ln x}}{{{x^2}}}\). Khi đó, trên khoảng \((1;4),{g^\prime }(x) = 0\) khi \(x = e\).
\(g(1) = 0,g(e) = \frac{1}{e},g(4) = \frac{{\ln 4}}{4} = \frac{{\ln 2}}{2}\).
Vậy \(\mathop {\max }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e},\mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = 0 \Rightarrow \mathop {\max }\limits_{\left[ {1;4} \right]} g(x) + \mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e} \approx 0,37\).
Câu 2
Lời giải
Dựa vào đồ thị ta có \(\mathop {max}\limits_{{\rm{[}} - 1;2]} y = 2\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.