Câu hỏi:

30/09/2025 257 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau :
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là (ảnh 1)
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

A. \[1\].                       
B. \[3\].                     
C. \[4\].                           
D. \[2\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có :\[\mathop {\lim }\limits_{x \to  - \infty } \,y = 2,\,\mathop {\lim }\limits_{x \to {0^ + }} \,y =  + \infty \] nên hàm số có tiệm cận ngang là\(y = 2\)và tiệm cận

đứng là \(x = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = x + 2\].            
B. \[y = x - 2\].           
C. \[y = x + 1\].                             
D. \[y = x - 1\].

Lời giải

Ta có \[y = \frac{{{x^2} - x + 1}}{{x + 1}} = x - 2 + \frac{3}{{x + 1}}\].

Suy ra: \[\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{3}{{x + 1}} = 0\]

Vậy \[y = x - 2\] là phương trình đường tiệm cận xiên của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{x + 1}}\].

Câu 2

A. (1;2).                         
B. \(\left( {1;\,1} \right)\).            
C. \(\left( {1;\, - 1} \right)\).                       
D. \(\left( {1;\,0} \right)\).

Lời giải

Ta có :\(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}} = 2x - 1 + \frac{1}{{x - 1}}\)nên đồ thị hàm số có tiệm cận đứng là đường thẳng\(x = 1\) và đường tiệm cận xiên là đường thẳng \(y = 2x - 1\).

Xét hệ phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\) nên giao điểm của hai đường tiệm cận là \(I\left( {1;\,1} \right)\).

Câu 3

A. 2.                           
B. 3.                         
C. 0.                               
D. 1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[3\].                       
B. \[2\].                     
C. \[0\].                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP