Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ

Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng

Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng
Quảng cáo
Trả lời:

Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to - {2^ - }} y = + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ + }} y = - \infty \) suy ra đường tiệm cận đứng của đồ thị hàm số là đường thẳng \(x = - 2\) và \(x = 2\).
Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to - \infty } y = 0\) và \(\mathop {\lim }\limits_{x \to + \infty } y = 0\) suy ra đường tiệm cận ngang của đồ thị hàm số là đường thẳng \(y = 0\).
Vậy đồ thị hàm số có \(3\) đường tiệm cận.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
TH1: \(m = 0\)\( \Rightarrow y = \frac{1}{{f(x)}}\).
Đồ thị hàm số có một TCN \(y = 0\) và ba tiệm cận đứng nên \(m = 0\) không thoả mãn.
TH2: \(m < 0\)
Đồ thị hàm số không có TCN
Yêu cầu bài toán \( \Leftrightarrow f(x) = m\) có nghiệm, trong đó có đúng hai nghiệm thoả mãn \(1 + m{x^2} \ge 0\).
Mà \(m\)là số nguyên nên dựa vào đồ thị ta chỉ cần xét \[m \in \left\{ { - 2;\left. { - 1} \right\}} \right.\].
+ Với \(m = - 2 \Rightarrow y = \frac{{\sqrt {1 - 2{x^2}} }}{{f(x) + 2}}\). Khi đó \(f(x) = - 2\)có hai nghiệm \({x_1} = 0\;;{x_2} = a > 2\). Nghiệm \({x_2}\) không thoả mãn điều kiện \(1 - 2{x^2} \ge 0\)nên \(m = - 2\) không thoả mãn
+ Với \(m = - 1 \Rightarrow y = \frac{{\sqrt {1 - {x^2}} }}{{f(x) + 1}}\) Khi đó \(f(x) = - 1\) có hai nghiệm \({x_1} = b\; \in \left( { - 1;0} \right);{x_2} = c \in \left( {0;1} \right)\). Cả hai nghiệm đều thoả mãn điều kiện\(1 - {x^2} \ge 0\) nên \(m = - 1\) thoả mãn.
TH3: \(m > 0\). Khi đó \(1 + m{x^2} > 0,\forall x \in R\).
Đồ thị hàm số có một TCN \(y = 0\).
Yêu cầu bài toán \( \Leftrightarrow f(x) = m\)có đúng một nghiệm \(x \in R \Leftrightarrow m > 2\).
Vì \(m\)nguyên thuộc đoạn \(\left[ { - 100;100} \right] \Rightarrow \left\{ \begin{array}{l}m \in Z\\m \in \left[ {3;100} \right] \cup \left\{ { - 1} \right\}\end{array} \right.\)nên có \(99\)giá trị.
Đáp số : 99.
Lời giải
Gọi\[y\]là chiều rộng của đáy bể cá \[\left( {y > 0,\,y\,(m)} \right)\] .
Ta có :\[0,8xy = 0,0128 \Rightarrow y = \frac{{0,016}}{x}\left( m \right)\].
Giá thành bể cá được xác định theo hàm số:
\[f\left( x \right) = 2.0,8\left( {x + \frac{{0,016}}{x}} \right).70000 + 100000.x.\frac{{0,016}}{x}\] (VNĐ)
\[ \Rightarrow f\left( x \right) = 112000\left( {x + \frac{{0,016}}{x}} \right) + 1600\](VNĐ)
\[ \Rightarrow f\left( x \right) = 112000x + 1600 + \frac{{1792}}{x}\](VNĐ).
Ta có:
\[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {112000x + 1600 + \frac{{1792}}{x}} \right) = + \infty \].
\[\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - (112000x + 1600)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{1792}}{x} = 0\]
Nên đồ thị hàm \[f\left( x \right)\] có tiệm cận đứng là \[x = 0\]; tiệm cận xiên là\[y = 112000x + 1600\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.