Câu hỏi:

30/09/2025 77 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng (ảnh 1)
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng

A. \(3\).                       
B. \(4\).                     
C. \(1\).                           
D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to  - {2^ - }} y =  + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ + }} y =  - \infty \) suy ra đường tiệm cận đứng của đồ thị hàm số là đường thẳng \(x =  - 2\) và \(x = 2\).

Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to  - \infty } y = 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } y = 0\) suy ra đường tiệm cận ngang của đồ thị hàm số là đường thẳng \(y = 0\).

Vậy đồ thị hàm số có \(3\) đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \({f^2}(x) - 2f(x) = 0 \Leftrightarrow \left[ \begin{array}{l}f(x) = 0\,\,\,\,(1)\\f(x) = 2\,\,\,\,(2)\end{array} \right..\)

Cho hàm số bậc ba \(y = f(x)\) có đồ thị như hình vẽ bên. Tìm số đường cận đứng của đồ thị hàm số \(y = g(x) = \frac{{(x + 1)({x^2} - 1)}}{{{f^2}(x) - 2f(x)}}\).  (ảnh 2)

Dựa vào đồ thị hàm số, ta thấy:

\((1)\,\)có nghiệm\({x_1} = a < - 1\) (nghiệm đơn) và \({x_2} = 1\) (nghiệm kép)\( \Rightarrow f(x) = k(x - a){(x - 1)^2}\left( {k \ne 0} \right)\)

\((2)\) có nghiệm ba nghiệm đơn \({x_3},{\rm{ }}{x_4},{\rm{ }}{x_5}\)với \[{x_3} = b < - 1 < {x_4} = 0 < 1 < {x_5} = c\] \( \Rightarrow f(x) - 2 = m(x - b)x(x - c){\rm{ }}\left( {m \ne 0} \right).\)

\( \Rightarrow \)Hàm số \(y = g(x)\)có tập xác định \[D = \mathbb{R}\backslash \left\{ {a;\,b;\,0;\,1;\,c} \right\}\]

Tại các điểm \(x = a,{\rm{ }}x = b,{\rm{ }}x = 0,{\rm{ }}x = 1,{\rm{ }}x = c\) mẫu của \(g\left( x \right)\) nhận giá trị bằng \(0\)còn tử nhận các giá trị dương. Và do hàm số xác định trên \[D = \mathbb{R}\backslash \left\{ {a;\,b;\,0;\,1;\,c} \right\}\]nên giới hạn một bên của hàm số \(y = g\left( x \right)\)tại các điểm \(x = a,{\rm{ }}x = b,{\rm{ }}x = 0,{\rm{ }}x = 1,{\rm{ }}x = c\) là các giới hạn vô cực. Do đó, đồ thị hàm số \(y = g\left( x \right)\)có 5 tiệm cận đứng, đó là các đường thẳng \(x = a,{\rm{ }}x = b,{\rm{ }}x = 0,{\rm{ }}x = 1,{\rm{ }}x = c\).

Vậy đồ thị hàm số \(y = g\left( x \right)\)có 5 tiệm cận đứng \(x = a,{\rm{ }}x = b,{\rm{ }}x = 0,{\rm{ }}x = 1,{\rm{ }}x = c\).

Câu 2

A. 2.                           
B. 3.                         
C. 0.                               
D. 1 .

Lời giải

Chọn đáp án A

TXĐ: \(D = \mathbb{R}\)

Gọi phương trình đường tiệm cận xiên là \(y = ax + b\).

Trường hợp 1:

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {4{x^2} - x + 3} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {4 - \frac{1}{x} + \frac{3}{{{x^2}}}} }}{x} = 2\)

\(b = \mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) - ax} \right) = \mathop {\lim }\limits_{x \to + \infty } \sqrt {4{x^2} - x + 3} - 2x = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 3}}{{\sqrt {4{x^2} - x + 3} + 2x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( { - 1 + \frac{3}{x}} \right)}}{{x\left( {\sqrt {4 - \frac{1}{x} + \frac{3}{{{x^2}}}} + 2} \right)}} = - \frac{1}{4}\)

Khi đó phương trình đường tiệm cận xiên là \(y = 2x - \frac{1}{4}\).

Trường hợp 2:

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} - x + 3} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {4 - \frac{1}{x} + \frac{3}{{{x^2}}}} }}{x} = - 2\)

\(b = \mathop {\lim }\limits_{x \to - \infty } \left( {f\left( x \right) - ax} \right) = \mathop {\lim }\limits_{x \to - \infty } \sqrt {4{x^2} - x + 3} + 2x = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 3}}{{\sqrt {4{x^2} - x + 3} - 2x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( { - 1 + \frac{3}{x}} \right)}}{{x\left( { - \sqrt {4 - \frac{1}{x} + \frac{3}{{{x^2}}}} - 2} \right)}} = \frac{1}{4}\)

Khi đó phương trình đường tiệm cận xiên là \(y = - 2x + \frac{1}{4}\).

Vậy đồ thị hàm số có hai đường tiệm cận xiên.

Câu 4

A. \[y = x + 2\].            
B. \[y = x - 2\].           
C. \[y = x + 1\].                             
D. \[y = x - 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. (1;2).                         
B. \(\left( {1;\,1} \right)\).            
C. \(\left( {1;\, - 1} \right)\).                       
D. \(\left( {1;\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[3\].                       
B. \[2\].                     
C. \[0\].                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP