Câu hỏi:

30/09/2025 200 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng (ảnh 1)
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số bằng

A. \(3\).                       
B. \(4\).                     
C. \(1\).                           
D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to  - {2^ - }} y =  + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ + }} y =  - \infty \) suy ra đường tiệm cận đứng của đồ thị hàm số là đường thẳng \(x =  - 2\) và \(x = 2\).

Dựa vào bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to  - \infty } y = 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } y = 0\) suy ra đường tiệm cận ngang của đồ thị hàm số là đường thẳng \(y = 0\).

Vậy đồ thị hàm số có \(3\) đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = x + 2\].            
B. \[y = x - 2\].           
C. \[y = x + 1\].                             
D. \[y = x - 1\].

Lời giải

Ta có \[y = \frac{{{x^2} - x + 1}}{{x + 1}} = x - 2 + \frac{3}{{x + 1}}\].

Suy ra: \[\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{3}{{x + 1}} = 0\]

Vậy \[y = x - 2\] là phương trình đường tiệm cận xiên của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{x + 1}}\].

Câu 2

A. (1;2).                         
B. \(\left( {1;\,1} \right)\).            
C. \(\left( {1;\, - 1} \right)\).                       
D. \(\left( {1;\,0} \right)\).

Lời giải

Ta có :\(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}} = 2x - 1 + \frac{1}{{x - 1}}\)nên đồ thị hàm số có tiệm cận đứng là đường thẳng\(x = 1\) và đường tiệm cận xiên là đường thẳng \(y = 2x - 1\).

Xét hệ phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\) nên giao điểm của hai đường tiệm cận là \(I\left( {1;\,1} \right)\).

Câu 3

A. 2.                           
B. 3.                         
C. 0.                               
D. 1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[3\].                       
B. \[2\].                     
C. \[0\].                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP