Câu hỏi:

30/09/2025 137 Lưu

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 3x + 5}}{{x + 2}}\)

A. \(y = x\).                 
B. \(y = x + 1\).          
C. \(y = x + 2\).                              
D. \(y = x + 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

Gọi phương trình đường tiệm cận xiên là \(y = ax + b\).

Khi đó

\(a = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + 3x + 5}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2}\left( {1 + \frac{3}{x} + \frac{5}{{{x^2}}}} \right)}}{{{x^2}\left( {1 + \frac{2}{x}} \right)}} = 1\).

\(b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {f\left( x \right) - ax} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {\frac{{{x^2} + 3x + 5}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{x + 5}}{{x + 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{x\left( {1 + \frac{5}{x}} \right)}}{{x\left( {1 + \frac{2}{x}} \right)}} = 1\).

Vậy phương trình đường tiệm cận xiên là \(y = x + 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = x + 2\].            
B. \[y = x - 2\].           
C. \[y = x + 1\].                             
D. \[y = x - 1\].

Lời giải

Ta có \[y = \frac{{{x^2} - x + 1}}{{x + 1}} = x - 2 + \frac{3}{{x + 1}}\].

Suy ra: \[\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{3}{{x + 1}} = 0\]

Vậy \[y = x - 2\] là phương trình đường tiệm cận xiên của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{x + 1}}\].

Câu 2

A. (1;2).                         
B. \(\left( {1;\,1} \right)\).            
C. \(\left( {1;\, - 1} \right)\).                       
D. \(\left( {1;\,0} \right)\).

Lời giải

Ta có :\(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}} = 2x - 1 + \frac{1}{{x - 1}}\)nên đồ thị hàm số có tiệm cận đứng là đường thẳng\(x = 1\) và đường tiệm cận xiên là đường thẳng \(y = 2x - 1\).

Xét hệ phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\) nên giao điểm của hai đường tiệm cận là \(I\left( {1;\,1} \right)\).

Câu 3

A. 2.                           
B. 3.                         
C. 0.                               
D. 1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[3\].                       
B. \[2\].                     
C. \[0\].                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP