Có bao nhiêu giá trị nguyên dương của tham số \(m\)để đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - 8x + m}}\]có 3 đường tiệm cận?
Quảng cáo
Trả lời:
Đáp số: 14.
Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{{x^2} - 8x + m}} = 0\) nên hàm số có một tiện cận ngang \(y = 0\).
Đồ thị của hàm số có 3 đường tiệm cận khi và chỉ khi đồ thị của hàm số có hai đường tiệm cận đứng \( \Leftrightarrow \)phương trình \({x^2} - 8x + m = 0\) có hai nghiệm phân biệt khác \(1\)\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 16 - m > 0\\m - 7 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 16\\m \ne 7\end{array} \right.\).
Kết hợp với điều kiện \(m\)nguyên dương ta có \(m \in \left\{ {1;2;3;...;6;8;...;15} \right\}\). Vậy có \(14\) giá trị của \(m\) thỏa mãn đề bài.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \[y = \frac{{{x^2} - x + 1}}{{x + 1}} = x - 2 + \frac{3}{{x + 1}}\].
Suy ra: \[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{3}{{x + 1}} = 0\]
Vậy \[y = x - 2\] là phương trình đường tiệm cận xiên của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{x + 1}}\].
Câu 2
Lời giải
Ta có :\(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}} = 2x - 1 + \frac{1}{{x - 1}}\)nên đồ thị hàm số có tiệm cận đứng là đường thẳng\(x = 1\) và đường tiệm cận xiên là đường thẳng \(y = 2x - 1\).
Xét hệ phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\) nên giao điểm của hai đường tiệm cận là \(I\left( {1;\,1} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

