Câu hỏi:

30/09/2025 9 Lưu

Người ta thống kê được chi phí sửa chữa, vận hành máy móc trong một năm của một xưởng sản xuất được tính bởi công thức \(f\left( x \right) = \frac{{2000x - 1500}}{{35x + 5}}\)(triệu đồng). Biết \(x\) là số năm kể từ lúc máy móc vận hành lần đầu tiên, số năm càng nhiều thì chi phí càng cao. Khi số năm \(x\) đủ lớn thì chi phí vận hành máy móc trong một năm gần với số nào? (làm tròn đến 1 chữ số thập phân sau dấu phẩy).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2000x - 1500}}{{35x + 5}} = \frac{{2000}}{{35}} = \frac{{400}}{7}\).

Do đó đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = \frac{{400}}{7}\) làm tiệm cận ngang, tức là khi số năm \(x\) càng lớn thì chi phí vận hành máy móc trong một năm càng tiến gần đến \(\frac{{400}}{7} \approx 57,1\) (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

TH1: \(m = 0\)\( \Rightarrow y = \frac{1}{{f(x)}}\).

Đồ thị hàm số có một TCN \(y = 0\) và ba tiệm cận đứng nên \(m = 0\) không thoả mãn.

TH2: \(m < 0\)

Đồ thị hàm số không có TCN

Yêu cầu bài toán \( \Leftrightarrow f(x) = m\) có nghiệm, trong đó có đúng hai nghiệm thoả mãn \(1 + m{x^2} \ge 0\).

\(m\)là số nguyên nên dựa vào đồ thị ta chỉ cần xét \[m \in \left\{ { - 2;\left. { - 1} \right\}} \right.\].

+ Với \(m = - 2 \Rightarrow y = \frac{{\sqrt {1 - 2{x^2}} }}{{f(x) + 2}}\). Khi đó \(f(x) = - 2\)có hai nghiệm \({x_1} = 0\;;{x_2} = a > 2\). Nghiệm \({x_2}\) không thoả mãn điều kiện \(1 - 2{x^2} \ge 0\)nên \(m = - 2\) không thoả mãn

+ Với \(m = - 1 \Rightarrow y = \frac{{\sqrt {1 - {x^2}} }}{{f(x) + 1}}\) Khi đó \(f(x) = - 1\) có hai nghiệm \({x_1} = b\; \in \left( { - 1;0} \right);{x_2} = c \in \left( {0;1} \right)\). Cả hai nghiệm đều thoả mãn điều kiện\(1 - {x^2} \ge 0\) nên \(m = - 1\) thoả mãn.

TH3: \(m > 0\). Khi đó \(1 + m{x^2} > 0,\forall x \in R\).

Đồ thị hàm số có một TCN \(y = 0\).

Yêu cầu bài toán \( \Leftrightarrow f(x) = m\)có đúng một nghiệm \(x \in R \Leftrightarrow m > 2\).

\(m\)nguyên thuộc đoạn \(\left[ { - 100;100} \right] \Rightarrow \left\{ \begin{array}{l}m \in Z\\m \in \left[ {3;100} \right] \cup \left\{ { - 1} \right\}\end{array} \right.\)nên có \(99\)giá trị.

Đáp số : 99.

Lời giải

Gọi\[y\]là chiều rộng của đáy bể cá \[\left( {y > 0,\,y\,(m)} \right)\] .

Ta có :\[0,8xy = 0,0128 \Rightarrow y = \frac{{0,016}}{x}\left( m \right)\].

Giá thành bể cá được xác định theo hàm số:

 \[f\left( x \right) = 2.0,8\left( {x + \frac{{0,016}}{x}} \right).70000 + 100000.x.\frac{{0,016}}{x}\] (VNĐ)

\[ \Rightarrow f\left( x \right) = 112000\left( {x + \frac{{0,016}}{x}} \right) + 1600\](VNĐ)

\[ \Rightarrow f\left( x \right) = 112000x + 1600 + \frac{{1792}}{x}\](VNĐ).

Ta có:

\[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {112000x + 1600 + \frac{{1792}}{x}} \right) =  + \infty \].

\[\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - (112000x + 1600)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{1792}}{x} = 0\]

Nên đồ thị hàm \[f\left( x \right)\] có tiệm cận đứng là \[x = 0\]; tiệm cận xiên là\[y = 112000x + 1600\].

Câu 3

A. \[y = x + 2\].            
B. \[y = x - 2\].           
C. \[y = x + 1\].                             
D. \[y = x - 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = x\).                 
B. \(y = x + 1\).          
C. \(y = x + 2\).                              
D. \(y = x + 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP