Khẳng định nào sau đây đúng về tính đơn điệu của hàm số \[y = \frac{{2x + 4}}{{1 - x}}\]?
Khẳng định nào sau đây đúng về tính đơn điệu của hàm số \[y = \frac{{2x + 4}}{{1 - x}}\]?
Quảng cáo
Trả lời:

Tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có \[y = \frac{{2x + 4}}{{1 - x}} \Rightarrow y' = \frac{6}{{{{(1 - x)}^2}}} > 0,\forall x \ne 1\].
Vậy hàm số đồng biến trên các khoảng \[\left( { - \infty ;1} \right)\]và \[\left( {1; + \infty } \right)\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 32,6
Để nồng độ chất độc trong máu thấp nhất khi thời gian di chuyển về đến tại thấp nhất.
Vậy nên Quãng đường ông Vinh di chuyển về đến trại phải thấp nhất.
Quãng đường của Ông Vinh
Theo bài ra ta có: ông Vinh sẽ đi qua các quãng đường \[XM + MN + NY.\]
Ta có: \[XM = NY = \sqrt {9 + {x^2}} \]; \[MN = 18 - 2x\]
Thời gian Ông Vinh chạy đến Trại nghỉ là: \[T(x) = 2\left( {\frac{{\sqrt {9 + {x^2}} }}{5} + \frac{{9 - x}}{{13}}} \right)\] với \[x \in \left( {0;9} \right)\]
Xét \[T'(x) = 2\left( {\frac{{\sqrt {9 + {x^2}} }}{5} + \frac{{9 - x}}{{13}}} \right) = 0 \Leftrightarrow x = \frac{5}{4}\] ( thỏa mãn)
Bảng biến thiên:
Dựa vào bảng biến thiên, ta thấy giá trị của \(T(x)\) nhỏ nhất khi \(x = \frac{5}{4}\).
\[ \Rightarrow \mathop {Min}\limits_{x \in \left( {0,9} \right)} {\rm{ }}T(x) = T(\frac{5}{4}) = \frac{{162}}{{65}}\]
Vậy, nồng độ chất độc trong máu thấp nhất là \[\mathop {\min }\limits_{(0, + \infty )} y = 50\log \left( {\frac{{162}}{{65}} + 2} \right) \approx 32,6\]
Lời giải
Đáp án: -3
Ta có: \[y = ax + 2 + \frac{b}{{x + c}}\].
- Nên đồ thị của hàm số có đường tiệm cận xiên là \(y = ax + 2\), mà như hình vẽ đường tiệm cận xiên đi qua điểm \(\left( {1;1} \right)\) suy ra \(1 = a.1 + 2 \Leftrightarrow a = - 1\).
- Đồ thị của hàm số có đường tiệm cận đứng là \(x = 1\) nên \(1 + c = 0 \Leftrightarrow c = - 1\).
Khi đó hàm số đã cho có dạng \(y = - x + 2 + \frac{b}{{x - 1}}\).
- Mặt khác đồ thị hàm số đi qua điểm \(\left( {0;3} \right)\) nên \( - 0 + 2 + \frac{b}{{0 - 1}} = 3 \Leftrightarrow 2 - b = 3 \Leftrightarrow b = - 1\).
Vậy \(P = a + b + c = - 1 + \left( { - 1} \right) + \left( { - 1} \right) = - 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.