Câu hỏi:

30/09/2025 9 Lưu

Một thành phố nằm trên một con sông chảy qua hẻm núi. Hẻm có chiều ngang 80m, một bên cao \[40{\rm{ m}}\] và một bên cao \[30{\rm{ m}}\]. Một cây cầu sẽ được xây dựng bắc qua sông và hẻm núi. Sơ đồ thiết kế của cây cầu được gắn hệ trục tọa độ như hình vẽ dưới đây.

Hai cột đỡ dọc \[MN\] và \[PQ\] ( song song với trục \[Oy\]) là đoạn nối giữa khung của Parabol và đường \[XY\]. Tính tổng độ d (ảnh 1)

Con đường \[XY\] xuyên qua hẻm núi được mô hình hóa bằng phương trình: \[y = \frac{{{x^3}}}{{25600}} - \frac{{3x}}{{16}} + 35\].

Hai cột đỡ dọc \[MN\] và \[PQ\] ( song song với trục \[Oy\]) là đoạn nối giữa khung của Parabol và đường \[XY\]. Tính tổng độ dài đoạn \[MN\]và \[PQ\] biết rằng \[N\]và \[Q\] là hai điểm đối xứng qua \[Oy\]; \[MN\] là đoạn có độ dài lớn nhất ( làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 49,5

Theo bài ra ta có: phương trình của Parabol là \[y = 60 - \frac{3}{{80}}{x^2}\].

Khoảng cách giữa khung Parabol và đường xuyên núi là:

\[D = 60 - \frac{3}{{80}}{x^2} - \left( {\frac{{{x^3}}}{{25600}} - \frac{{3x}}{{16}} + 35} \right)\] với \[x \in \left( { - 23,71;27,99} \right)\]

Xét \[D' =  - \frac{3}{{40}}x - \frac{{3{x^2}}}{{25600}} + \frac{3}{{16}} = 0 \Leftrightarrow x = 2,49\]

Bảng biến thiên:

Hai cột đỡ dọc \[MN\] và \[PQ\] ( song song với trục \[Oy\]) là đoạn nối giữa khung của Parabol và đường \[XY\]. Tính tổng độ d (ảnh 2)

Dựa vào bảng biến thiên, \[MN\] là đoạn có độ dài lớn nhất khi \[x = 2,49\]\[ \Rightarrow MN = {D_{MN}} = 60 - \frac{3}{{80}}.2,{49^2} - \left( {\frac{{2,{{49}^3}}}{{25600}} - \frac{{3.2,49}}{{16}} + 35} \right) \approx 25,23\]

Vì \[N\]và \[Q\] là hai điểm đối xứng qua \[Oy\]\[ \Rightarrow {x_{PQ}} \approx  - 2,49\]

\[ \Rightarrow PQ = {D_{PQ}} = 60 - \frac{3}{{80}}.2,{49^2} - \left( {\frac{{ - 2,{{49}^3}}}{{25600}} - \frac{{3. - 2,49}}{{16}} + 35} \right) \approx 24,3\]

Tổng độ dài \[MN + PQ = 49,5\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: -3

Ta có: \[y = ax + 2 + \frac{b}{{x + c}}\].

- Nên đồ thị của hàm số có đường tiệm cận xiên là \(y = ax + 2\), mà như hình vẽ đường tiệm cận xiên đi qua điểm \(\left( {1;1} \right)\) suy ra \(1 = a.1 + 2 \Leftrightarrow a =  - 1\).

- Đồ thị của hàm số có đường tiệm cận đứng là \(x = 1\) nên \(1 + c = 0 \Leftrightarrow c =  - 1\).

Khi đó hàm số đã cho có dạng \(y =  - x + 2 + \frac{b}{{x - 1}}\).

- Mặt khác đồ thị hàm số đi qua điểm \(\left( {0;3} \right)\) nên \( - 0 + 2 + \frac{b}{{0 - 1}} = 3 \Leftrightarrow 2 - b = 3 \Leftrightarrow b =  - 1\).

Vậy \(P = a + b + c =  - 1 + \left( { - 1} \right) + \left( { - 1} \right) =  - 3.\)

Lời giải

Đáp số: 1.

Ta có \(y' = 3{x^2} - 4x + 1\). \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{3}\end{array} \right.\).

Bảng biến thiên của hàm số đã cho:

 Khoảng cách từ điểm cực tiểu của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 1\) đến trục hoành là (ảnh 1)

Vậy đồ thị hàm số đã cho có điểm cực tiểu là \(A\left( {1; - 1} \right)\). Khoảng cách từ điểm cực tiểu của đồ thị hàm số đã cho đến trục hoành bằng 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP