Câu hỏi:

30/09/2025 279 Lưu

Cho hàm số \(y = \frac{{{x^2} + x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\).

a) Hàm số luôn đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

b) Đồ thị \(\left( C \right)\) của hàm số đã cho có tiệm cận đứng \(x =  - 2\).

c) Đồ thị \(\left( C \right)\) của hàm số đã cho có tiệm cận xiên \(y = x - 3\).

d) Gọi \(S\) là tập hợp tất cả các điểm có tọa độ nguyên thuộc đồ thị \(\left( C \right)\). Khi đó, số phần tử của \(S\) là \(3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Câu 4

Giải chi tiết( giải thích)

a) Đ

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Ta có: \(y' = \frac{{{x^2} + 4x + 5}}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \in D\).

Vậy hàm số luôn đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

b) Đ

Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{{x^2} + x - 3}}{{x + 2}} =  + \infty \); \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{{x^2} + x - 3}}{{x + 2}} =  - \infty \)

Vậy \(x =  - 2\) là tiệm cận đứng của đồ thị hàm số.

c) s

Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x - 3}}{{{x^2} + 2x}} = 1\) và \(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{{x^2} + x - 3}}{{x + 2}} - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x - 3}}{{x + 2}} =  - 1\).

Vậy \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số.

d) s

Ta có: \(y = \frac{{{x^2} + x - 3}}{{x + 2}} = \frac{{{x^2} + 2x - \left( {x + 2} \right) - 1}}{{x + 2}} = x - 2 - \frac{1}{{x + 2}}\).

Để \(x \in \mathbb{Z}\) và \(y \in \mathbb{Z}\) thì suy ra \(\frac{1}{{x + 2}} \in \mathbb{Z}\) suy ra \(\left[ \begin{array}{l}x + 2 = 1\\x + 2 =  - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x =  - 1\\x =  - 3\end{array} \right.\).

Với \(x =  - 1 \Rightarrow y =  - 3\).

Với \(x =  - 3 \Rightarrow y =  - 3\).

Vậy có 2 điểm có tọa độ nguyên thuộc đồ thị \(\left( C \right)\), số phần tử của \(S\) là \(2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 32,6

Để nồng độ chất độc trong máu thấp nhất khi thời gian di chuyển về đến tại thấp nhất.

Vậy nên Quãng đường ông Vinh di chuyển về đến trại phải thấp nhất.

Quãng đường của Ông Vinh

Theo bài ra ta có: ông Vinh sẽ đi qua các quãng đường \[XM + MN + NY.\]

Ta có: \[XM = NY = \sqrt {9 + {x^2}} \]; \[MN = 18 - 2x\]

Thời gian Ông Vinh chạy đến Trại nghỉ là: \[T(x) = 2\left( {\frac{{\sqrt {9 + {x^2}} }}{5} + \frac{{9 - x}}{{13}}} \right)\] với \[x \in \left( {0;9} \right)\]

Xét \[T'(x) = 2\left( {\frac{{\sqrt {9 + {x^2}} }}{5} + \frac{{9 - x}}{{13}}} \right) = 0 \Leftrightarrow x = \frac{5}{4}\] ( thỏa mãn)

Bảng biến thiên:

Tính nồng độ chất độc trong máu thấp nhất khi ông Vinh về đến trại ( làm tròn đáp án đến hàng phần chục). (ảnh 2)

Dựa vào bảng biến thiên, ta thấy giá trị của \(T(x)\) nhỏ nhất khi \(x = \frac{5}{4}\).

\[ \Rightarrow \mathop {Min}\limits_{x \in \left( {0,9} \right)} {\rm{ }}T(x) = T(\frac{5}{4}) = \frac{{162}}{{65}}\]

Vậy, nồng độ chất độc trong máu thấp nhất là \[\mathop {\min }\limits_{(0, + \infty )} y = 50\log \left( {\frac{{162}}{{65}} + 2} \right) \approx 32,6\]

Lời giải

Đáp án: 49,5

Theo bài ra ta có: phương trình của Parabol là \[y = 60 - \frac{3}{{80}}{x^2}\].

Khoảng cách giữa khung Parabol và đường xuyên núi là:

\[D = 60 - \frac{3}{{80}}{x^2} - \left( {\frac{{{x^3}}}{{25600}} - \frac{{3x}}{{16}} + 35} \right)\] với \[x \in \left( { - 23,71;27,99} \right)\]

Xét \[D' =  - \frac{3}{{40}}x - \frac{{3{x^2}}}{{25600}} + \frac{3}{{16}} = 0 \Leftrightarrow x = 2,49\]

Bảng biến thiên:

Hai cột đỡ dọc \[MN\] và \[PQ\] ( song song với trục \[Oy\]) là đoạn nối giữa khung của Parabol và đường \[XY\]. Tính tổng độ d (ảnh 2)

Dựa vào bảng biến thiên, \[MN\] là đoạn có độ dài lớn nhất khi \[x = 2,49\]\[ \Rightarrow MN = {D_{MN}} = 60 - \frac{3}{{80}}.2,{49^2} - \left( {\frac{{2,{{49}^3}}}{{25600}} - \frac{{3.2,49}}{{16}} + 35} \right) \approx 25,23\]

Vì \[N\]và \[Q\] là hai điểm đối xứng qua \[Oy\]\[ \Rightarrow {x_{PQ}} \approx  - 2,49\]

\[ \Rightarrow PQ = {D_{PQ}} = 60 - \frac{3}{{80}}.2,{49^2} - \left( {\frac{{ - 2,{{49}^3}}}{{25600}} - \frac{{3. - 2,49}}{{16}} + 35} \right) \approx 24,3\]

Tổng độ dài \[MN + PQ = 49,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = x + 2\).            
B. \(y = x + 4\).          
C. \(y = x - 3\).                              
D. \(y = x - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP