Đồ thị hàm số nào sau đây cắt trục hoành tại điểm có hoành độ dương?
Đồ thị hàm số nào sau đây cắt trục hoành tại điểm có hoành độ dương?
Quảng cáo
Trả lời:
Chọn B
Đồ thị hàm số \(y = \frac{{3x + 2}}{{x - 1}}\) cắt trục hoành tại điểm có hoành độ \({x_0} = - \frac{2}{3}\)
Đồ thị hàm số \(y = \frac{{ - 2x + 4}}{{x - 1}}\) cắt trục hoành tại điểm có hoành độ \({x_0} = 2\)
Đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) cắt trục hoành tại điểm có hoành độ \({x_0} = - \frac{3}{2}\)
Đồ thị hàm số \(y = \frac{{2x + 1}}{{ - x + 1}}\) cắt trục hoành tại điểm có hoành độ \({x_0} = - \frac{1}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số đã cho xác định và liên tục trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)\)
\(y = \frac{{m{x^2} + \left( {{m^2} + m + 2} \right)x + {m^2} + 3}}{{x + 1}} = mx + {m^2} + 2 + \frac{1}{{x + 1}},x \ne - 1\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{x + 1}} = 0\) nên \(\left( d \right):y = mx + {m^2} + 2\) \( \Leftrightarrow \left( d \right):mx - y + {m^2} + 2 = 0\) là đường cận xiên hoặc ngang của hàm số.
Ta có: \(d\left( {O;d} \right) = \frac{{\left| {{m^2} + 2} \right|}}{{\sqrt {{m^2} + 1} }} = \sqrt {{m^2} + 1} + \frac{1}{{\sqrt {{m^2} + 1} }} \ge 2\)
Vậy \(d\left( {O;d} \right)\) nhỏ nhất bằng \(2\) khi \(\sqrt {{m^2} + 1} = \frac{1}{{\sqrt {{m^2} + 1} }} \Leftrightarrow m = 0\).
Khi đó hàm số có tiệm cận ngang là \(y = 2\).
Lời giải
Ta có\(y' = 3{x^2} - 6x - m\).
Hàm số đồng biến trên khi \(y' \ge 0,\;\forall x \in \left( {0; + \infty } \right) \Leftrightarrow 3{x^2} - 6x - m \ge 0,\;\forall x \in \left( {0; + \infty } \right)\)
\( \Leftrightarrow 3{x^2} - 6x \ge m,\;\forall x \in \left( {0; + \infty } \right)\;\quad \left( 1 \right)\)
Xét hàm số \(f\left( x \right) = 3{x^2} - 6x\;\)trên \(\left( {0; + \infty } \right)\)
Ta có \(f'\left( x \right) = 6x - 6\,,\;f'\left( x \right) = 0 \Leftrightarrow x = 1.\) Do đó \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = - 3\]
\(\left( 1 \right) \Leftrightarrow m \le - 3.\)Kết hợp với giả thiết ta được \(m \in \left( { - 2024; - 3} \right]\). Nên có \[2021\] số nguyên thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong trong hình sau. Phương trình \[f\left( {f\left( x \right)} \right) = 0\] có bao nhiêu nghiệm thực phân biệt? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/15-1759203193.png)