Một cốc chứa \[25\]ml dung dịch \[NaOH\]với nồng độ \[100\] mg/ml. Một bình chứa dung dịch \[NaOH\] khác với nồng độ \[9\]mg/ml được trộn vào cốc. Gọi \[C\left( x \right)\] là nồng độ của \[NaOH\] sau khi trộn \[x\](ml) từ bình chứa, ta thấy nồng độ của \[NaOH\]trong cốc sẽ luôn giảm theo \[x\] nhưng luôn lớn hơn một số \[a\]. Tính \[a\]?
Một cốc chứa \[25\]ml dung dịch \[NaOH\]với nồng độ \[100\] mg/ml. Một bình chứa dung dịch \[NaOH\] khác với nồng độ \[9\]mg/ml được trộn vào cốc. Gọi \[C\left( x \right)\] là nồng độ của \[NaOH\] sau khi trộn \[x\](ml) từ bình chứa, ta thấy nồng độ của \[NaOH\]trong cốc sẽ luôn giảm theo \[x\] nhưng luôn lớn hơn một số \[a\]. Tính \[a\]?
Quảng cáo
Trả lời:

Đáp án: \[9\]mg/ml.
Tổng khối lượng của \[NaOH\] sau khi trộn \[x\](ml) là: \[25.100 + 9x = 2500 + 9x\](mg)
Tổng thể tích của dung dịch sau khi trộn là : \[25 + x\].
Ta có \[C\left( x \right) = \frac{{2500 + 9x}}{{25 + x}};x \ge 0.\]
Ta có TXĐ của hàm số là \[D = \left[ {0; + \infty } \right)\]
Có
Lại có
Do đó nồng độ \[NaOH\] luôn giảm nhưng luôn lớn hơn \[9\]mg/ml.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Số giao điểm của đường thẳng \(y = 1\) và đồ thị của hàm số \(y = f\left( x \right)\) là 3.
Lời giải
Đáp án: \[3\].
Hàm số \(y = f(x) = {2024^x} - {2024^{ - x}} + x + \sin x\) xác định trên \(\mathbb{R}\) và
\(f( - x) = {2024^{ - x}} - {2024^x} - x - \sin x = - f(x)\)
, suy ra \(f(x)\) là hàm số lẻ.
Mặt khác, \(y' = f'(x) = {2024^x}.\ln 2024 + {2024^{ - x}}.\ln 2024 + 1 + \cos x > 0,\,\,\forall x \in \mathbb{R}\).
Do đó, \(f(x)\) đồng biến trên \(\mathbb{R}\).
Khi đó, phương trình
\[f(x + 3) + f\left( {{x^3} - 4x + m} \right) = 0 \Leftrightarrow f(x + 3) = - f\left( {{x^3} - 4x + m} \right)\]
\[ \Leftrightarrow f(x + 3) = f\left( { - {x^3} + 4x - m} \right) \Leftrightarrow x + 3 = - {x^3} + 4x - m\]
\[ \Leftrightarrow {x^3} - 3x + 3 = - m\]
Đặt \[g(x) = {x^3} - 3x + 3 \Rightarrow g'(x) = 3{x^2} - 3\].
Ta có \[g'(x) = 0 \Leftrightarrow 3{x^2} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\].
Bảng biến thiên:
Từ bảng biến thiên suy ra phương trình đã cho có 3 nghiệm phân biệt khi và chỉ khi đường thẳng \(y = - m\) cắt đồ thị hàm số \[g(x) = {x^3} - 3x + 3\] tại 3 điểm phân biệt
\( \Leftrightarrow 1 < - m < 5 \Leftrightarrow - 5 < m < - 1\).
Vậy có 3 giá trị nguyên của m thoả đề.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \[y = {x^3} - 3x + 2\]. Khi đó
a) Tập xác định của hàm số đã cho là \[\left( {0\,;\, + \infty } \right)\].
b) Đồ thị của hàm số đã cho đi qua điểm \[\left( {0\,;2} \right)\].
c) Hàm số đạt cực trị tại \[x = 0\].
d) Giá trị lớn nhất của hàm số đã cho trên đoạn \[\left[ {0;2} \right]\] bằng \[4\].
PHẦN II. CÂU TRẮC NGHIỆM ĐÚNG SAI
Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Cho hàm số \[y = {x^3} - 3x + 2\]. Khi đó
a) Tập xác định của hàm số đã cho là \[\left( {0\,;\, + \infty } \right)\].
b) Đồ thị của hàm số đã cho đi qua điểm \[\left( {0\,;2} \right)\].
c) Hàm số đạt cực trị tại \[x = 0\].
d) Giá trị lớn nhất của hàm số đã cho trên đoạn \[\left[ {0;2} \right]\] bằng \[4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.