Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Đường cong có dạng của đồ thị hàm số bậc hai / bậc nhất nên ta loại được phương án A và C. Dựa vào đồ thị ta thấy phương trình đường tiệm cận xiên là \(y = x + 1\)
Thử câu D ta có: \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}} = x + 1 + \frac{1}{{x + 1}}\) nên đồ thị hàm số có tiệm cận xiên là \(y = x + 1\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định \(D = \mathbb{R}\).
\(y' = f'(x) = 4{x^3} - 4x\).
Cho \(y' = 0 \Leftrightarrow x = - 1 \vee x = 0 \vee x = 1.\)
Ta có bảng biến thiên:
Từ bảng biến thiên ta thấy
a) Đúng.
b) Sai.
c) Sai.
d) Đúng.Ta có
\[\begin{array}{l}f(2x) = 16{x^4} - 8{x^2} - 5\\ \Rightarrow f'(2x) = 64{x^3} - 16x\end{array}\]
Cho \(f'(2x) = 0 \Leftrightarrow x = \frac{{ - 1}}{2} \vee x = 0 \vee x = \frac{1}{2}\)
Ta có bảng biến thiên sau:
Ta thấy hàm \(y = f(x)\) và \[y = f(2x)\] đều đạt cực đại tại \(x = 0\).
Lời giải
a) Đúng.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 3}}{{x + 1}} = 2\) nên đồ thị hàm số có đường tiệm cận ngang là đường thẳng \(y = 2\).
b) Sai.
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 3}}{{x + 1}} = \frac{{2.1 - 3}}{{1 + 1}}\)\( = - \frac{1}{2}\) và \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 3}}{{x + 1}} = \frac{{2.1 - 3}}{{1 + 1}}\)\( = - \frac{1}{2}\).
Do đó, đường thẳng \(x = 1\) không phải là đường tiệm cận đứng của đồ thị hàm số đã cho.
c) Đúng.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 3}}{{x + 1}} = 2\) và \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 3}}{{x + 1}} = 2\) nên đồ thị hàm số chỉ có một đường tiệm cận ngang là đường thẳng \(y = 2\).
Lại có: \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 3}}{{x + 1}} = - \infty \) và \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 3}}{{x + 1}} = + \infty \), hơn nữa chỉ khi \(x\) dần đến \( - 1\) thì \(y\) mới dần đến vô cực nên đồ thị hàm số chỉ có một đường tiệm cận đứng là \(x = - 1\).
Do đó, đồ thị hàm số chỉ có đúng hai đường tiệm cận.
d) Đúng.
Ta có tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số là \(I\left( { - 1;2} \right)\).
Thế \(x = - 1\) và \(y = 2\) vào phương trình đường thẳng \(\left( \Delta \right):x + 2y - 3 = 0\), ta được:
\( - 1 + 2.2 - 3 = 0\) (Đúng)
Vậy điểm \(I\left( { - 1;2} \right)\) nằm trên đường thẳng \(\left( \Delta \right):x + 2y - 3 = 0\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.