Cho hàm số\(y = f(x)\)có bảng biến thiên như sau

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:

Chọn B.
Từ BBT ta có :
+) \[\mathop {\lim }\limits_{x \to - \infty } y = 0 \Rightarrow \] Đồ thị hàm số có tiệm cận ngang : \(y = 0\).
+) \[\mathop {\lim }\limits_{x \to + \infty } y = 5 \Rightarrow \] Đồ thị hàm số có tiệm cận ngang : \(y = 5\).
+) \[\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \Rightarrow \] Đồ thị hàm số có tiệm cận đứng : \(x = 1\).
Vậy : Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là 3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 5
Giả sử hàm số có đồ thị là \((C)\). Ta có :
+) \[y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}}\].
+) \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \left[ {\frac{{{x^2} - x + 1}}{{x - 1}} - x} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{x - 1}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{\frac{1}{x}}}{{1 - \frac{1}{x}}} = 0 \Rightarrow \left( C \right)\) có tiệm cận xiên là đường thẳng \(y = x\).
Suy ra : \(a = 1;\,\,\,b = 0\,\, \Rightarrow P = 5a + 2024b = 5.1 + 2024.0 = 5.\)
Lời giải
a) Đúng.
Vì dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).
b) Sai.
Vì dựa vào đồ thị ta thấy hàm số đạt cực đại tại \(x = 2\).
c) Đúng.
Theo đồ thị ta thấy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = 0\)và \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = - 4\).
d) Sai.
Xét hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) . Vì \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(g\left( x \right)\)liên tục trên \(\mathbb{R}\).
Từ đồ thị ta có bảng xét dấu của \(f'\left( x \right)\) như sau:
Ta có: \(g'\left( x \right) = \left( {3 - x} \right)'f'\left( {3 - x} \right) = - f'\left( {3 - x} \right)\).
Cho \(g'\left( x \right) = 0\)\( \Leftrightarrow - f'\left( {3 - x} \right) = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3 - x = 0}\\{3 - x = 2}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = 1}\end{array}} \right.\)
Từ bảng xét dấu của \(f'\left( x \right)\) suy ra được bảng xét dấu của \(g'\left( x \right)\)
Vậy hàm số \(g\left( x \right)\) không nghịch biến trên \(\left( {2;5} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.