Câu hỏi:

02/10/2025 394 Lưu

Ông Nam cần xây dựng một bể nước mưa có thể tích \(V = 8\left( {{{\rm{m}}^{\rm{3}}}} \right)\) dạng hình hộp chữ nhật với chiều dài gấp \(\frac{4}{3}\) lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980.000đ/m2 và ở nắp để hở một khoảng hình vuông có diện tích bằng \(\frac{2}{9}\) diện tích nắp bể. Tính chi phí thấp nhất        mà ông Nam phải chi trả (làm tròn đến hàng triệu đồng).

Ông Nam cần xây dựng một bể nước mưa có thể tích \(V = 8\lef (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi chiều rộng của bể là \(3x{\rm{ }}\left( {\rm{m}} \right)\). Ta có chiều dài bể là \(4x{\rm{ (m)}}\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\left( {\rm{m}} \right).\)

Khi đó tổng diện tích bề mặt xây là:

\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}}  = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).

Vậy chi phí thấp nhất mà ông Nam phải chi trả là \(28\) triệu đồng.

Đáp án: 28.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.

c) Sai. Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).

Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).

Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).

d) Đúng. Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).

Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\) là hàm số bậc ba có đ (ảnh 2)

Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\\x = 1\end{array} \right.\).

 Bảng biến thiên của hàm số \(g\left( x \right)\).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\)và hàm số \(y = f'\left( x \right)\) là hàm số bậc ba có đ (ảnh 3)

Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).

Lời giải

a) Đúng.

\(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 55 \notin \left( {0;50} \right)\\t = 18 \in \left( {0;50} \right)\end{array} \right.\)

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 1)

b) Sai. Dựa vào bảng biến thiên trên ta thấy trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 18\left( {\rm{s}} \right)\).

c) Đúng. \(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) =  - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 2)

Vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\,\left( {{\rm{km/s}}} \right)\).

d) Sai. \(h\left( t \right) =  - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) =  - 0,03{t^2} + 2,2t - 30\)

\( \Rightarrow a\left( t \right) = v'\left( t \right) =  - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).

Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng (ảnh 3)

Khi đó: \({v_{{\rm{max}}}} = 10,33 \Leftrightarrow t \approx 37;\,\,\,\,h\left( {37} \right) = 139,37\)km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số không đạt cực tiểu tại điểm \(x = 2\).
B. Hàm số đạt cực đại tại điểm \(x = - 1\).
C. Điểm cực đại của đồ thị hàm số là \(\left( { - 1;2} \right)\).
D. Giá trị cực đại của hàm số là \(y = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x = 1\].                     
B. \[y = 1\].                   
C. \[y = 0\].                                   
D. \[x = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP