Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách \[300\,{\rm{km}}\] để tới nơi sinh sản. Vận tốc dòng nước là \[6\,{\rm{km/h}}\]. Giả sử vận tốc bơi của cá khi nước đứng yên là \[v{\rm{ km/h}}\] thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right) = c{v^3}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tình vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?
Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách \[300\,{\rm{km}}\] để tới nơi sinh sản. Vận tốc dòng nước là \[6\,{\rm{km/h}}\]. Giả sử vận tốc bơi của cá khi nước đứng yên là \[v{\rm{ km/h}}\] thì năng lượng tiêu hao của cả trong \(t\) giờ cho bởi công thức \(E\left( v \right) = c{v^3}t\) trong đó \(c\) là hàng số cho trước. \(E\) tính hằng Jun. Tình vận tốc bơi của cả khi nước đứng yên, để năng lượng của cả tiêu hao ít nhất?
Quảng cáo
Trả lời:
Theo đề bài, vận tốc của cá khi bơi trên sông là \(v - 6\), khi đó thời gian để cá bơi đến nơi sinh sản là \(t = \frac{{300}}{{v - 6}}\).
Khi đó, \(E\left( v \right) = c{v^3}\frac{{300}}{{v - 6}}\) với \(v > 6\). Đặt \(x = v - 6\).
Bài năng lượng tiêu hao của cá được tính bởi hàm số:
\[f\left( x \right) = 300c\frac{{{{\left( {x + 6} \right)}^3}}}{x} = 300c\left( {{x^2} + 18x + 108 + \frac{{216}}{x}} \right)\] với \(x > 0\).
Ta có: \[f'\left( x \right) = 300c\left( {2x + 18 - \frac{{216}}{{{x^2}}}} \right) = 0 \Leftrightarrow 2{x^3} + 18{x^2} - 216 = 0 \Rightarrow x = 3\].
Bảng biến thiên:
![Một con cá hồi bơi ngược dòng (từ nơi sinh sống) vượt khoảng cách \[300\,{\rm{km}}\] để tới nơi sinh sản. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1759418155.png)
Vậy \(\mathop {\min }\limits_{x \in \left( {0; + \infty } \right)} f\left( x \right) = f\left( 3 \right)\) hay khi vận tốc của cá khi nước đứng yên là \(v = 9\,{\rm{km/h}}\) thì cá ít tốn năng lượng nhất.
Đáp án: 9.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right) \ge 0\) với \(\forall x \ge 1\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).
b) Sai. Vì từ đồ thị của hàm số \(y = f'\left( x \right)\) ta thấy \(f'\left( x \right)\) chỉ đổi dấu một lần qua \(x = 1\) nên hàm số có một điểm cực trị.
c) Sai. Từ đồ thị ta có hàm số \(f'\left( x \right)\) có dạng: \(f'\left( x \right) = a{\left( {x + 2} \right)^2}\left( {x - 1} \right)\).
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua \(\left( {0; - 4} \right)\) nên: \( - 4 = a{\left( {0 + 2} \right)^2}\left( {0 - 1} \right) \Leftrightarrow a = 1\).
Vậy \(f'\left( x \right) = {\left( {x + 2} \right)^2}\left( {x - 1} \right) \Rightarrow f'\left( 2 \right) = {\left( {2 + 2} \right)^2}\left( {2 - 1} \right) = 16\).
d) Đúng. Ta có: \(g'\left( x \right) = f'\left( x \right) - x + 1 = 0 \Leftrightarrow f'\left( x \right) = x - 1\).
Vẽ đường thẳng \(y = x - 1\) trên cùng hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\).

Khi đó: \(f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\\x = 1\end{array} \right.\).
Bảng biến thiên của hàm số \(g\left( x \right)\).

Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) nên \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - \frac{5}{2}; - \frac{3}{2}} \right)\).
Lời giải
Gọi chiều rộng của bể là \(3x{\rm{ }}\left( {\rm{m}} \right)\). Ta có chiều dài bể là \(4x{\rm{ (m)}}\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\left( {\rm{m}} \right).\)
Khi đó tổng diện tích bề mặt xây là:
\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí \(C\) (tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).
Vậy chi phí thấp nhất mà ông Nam phải chi trả là \(28\) triệu đồng.
Đáp án: 28.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



![Chọn C Từ đồ thị ta thấy trên đoạn \(\left[ { - 2;2} \right]\) có \(m = - 5,M = - 1\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/2-1759417823.png)