Câu hỏi:

12/10/2025 1,780 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho \(\Delta ABC\) nội tiếp đường tròn tâm \(O,H\) là trực tâm tam giác, \(D\) là điểm đối xứng của \(A\) qua \(O\). Khi đó:

a) \(BD//CH\)

b) \(CD//BH\)

a) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HO} \);

d) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OH} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho \(\Delta ABC\) nội tiếp (ảnh 1)

Xét tam giác \(ABD\) nội tiếp đường tròn đường kính \(AD\) nên \(AB \bot BD\); mặt khác \(AB \bot CH\) nên \(BD//CH\) (1).

Tương tự, tam giác \(ACD\) nội tiếp đường tròn đường kính \(AD\) nên \(AC \bot CD\); mặt khác \(AC \bot BH\) nên \(CD//BH\) (2).

Từ (1) và (2) suy ra \(BDCH\) là hình bình hành.

Ta có: \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} \) (vì \(O\) là trung điểm \(AD\)).

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC} \)

\( = 3\overrightarrow {OH}  + (\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} ) = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} {\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\). Gọi \(E\) và \(F\) là 2 điểm thỏa \(\overrightarrow {BE}  = \frac{1}{3}\overrightarrow {BC} \), \(\overrightarrow {BF (ảnh 1)

Ta phân tích \(\overrightarrow {AE} \) và \(\overrightarrow {AF} \) theo 2 vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).

\(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} \)

\(\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{1}{4}(\overrightarrow {AD}  - \overrightarrow {AB} ) = \frac{3}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} \).

Xét hệ: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\\{\overrightarrow {AF}  = \frac{3}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} }\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\\{\frac{4}{3}\overrightarrow {AF}  = \overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AD} }\end{array} \Rightarrow \overrightarrow {AE}  = \frac{4}{3}\overrightarrow {AF} } \right.} \right.\)

Lời giải

Cho hình bình hành \(ABCD\), tâm \(O\). (ảnh 1)

Ta có: \(\overrightarrow {OA}  =  - 3\overrightarrow {OP}  \Leftrightarrow \overrightarrow {OA}  + 3\overrightarrow {OP}  = \vec 0\).

Khi đó: \(3\overrightarrow {AP}  - 2\overrightarrow {AC}  = 3(\overrightarrow {AO}  + \overrightarrow {OP} ) - 2.2\overrightarrow {AO}  = \overrightarrow {OA}  + 3\overrightarrow {OP}  = \vec 0\).

Ta có: \(\overrightarrow {OP}  =  - \frac{1}{3}\overrightarrow {OA}  = \frac{1}{3}\overrightarrow {OC}  \Rightarrow P\) là trọng tâm của tam giác \(BCD\), do vậy trung tuyến \(BN\) của tam giác \(BCD\) đi qua trọng tâm \(P\) đó. Vậy ba điểm \(B,P,N\) thẳng hàng.

Nhận xét: \(AC\) và \(BD\) cắt nhau tại tâm \(O\) là trung điểm của mỗi đường.

Mặt khác \(:\overrightarrow {OM}  + \overrightarrow {ON}  = \frac{1}{2}(\overrightarrow {OA}  + \overrightarrow {OB} ) + \frac{1}{2}(\overrightarrow {OC}  + \overrightarrow {OD} ) = \frac{1}{2}(\overrightarrow {OA}  + \overrightarrow {OC} ) + \frac{1}{2}(\overrightarrow {OB}  + \overrightarrow {OD} ) = \vec 0\).

Do đó \(O\) là trung điểm của \(MN\) hay \(AC,BD,MN\) đồng quy tại \(O\).

Câu 5

A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} \)                                     
B. \(2\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) = 3\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)
C. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 2\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)           
D. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\left( {\overrightarrow {OD} + \overrightarrow {OE} + \overrightarrow {OF} } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \].         
B. \[\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \].          
C. \[\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \].                        
D. \[\overrightarrow {MB} = - 3\overrightarrow {MA} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP