Cho hình bình hành \(ABCD\), tâm \(O\). Gọi \(M,N\) theo thứ tự là trung điểm của \(AB,CD\) và \(P\) là điểm thỏa mãn hệ thức: \(\overrightarrow {OP} = - \frac{1}{3}\overrightarrow {OA} \). Khi đó:
a) \(\overrightarrow {OA} + 3\overrightarrow {OP} = \vec 0\)
b) \(3\overrightarrow {AP} - 3\overrightarrow {AC} = \vec 0\)
c) Ba điểm \(B,P,N\) không thẳng hàng
d) Ba đường thẳng \(AC,BD,MN\) đồng quy
Cho hình bình hành \(ABCD\), tâm \(O\). Gọi \(M,N\) theo thứ tự là trung điểm của \(AB,CD\) và \(P\) là điểm thỏa mãn hệ thức: \(\overrightarrow {OP} = - \frac{1}{3}\overrightarrow {OA} \). Khi đó:
a) \(\overrightarrow {OA} + 3\overrightarrow {OP} = \vec 0\)
b) \(3\overrightarrow {AP} - 3\overrightarrow {AC} = \vec 0\)
c) Ba điểm \(B,P,N\) không thẳng hàng
d) Ba đường thẳng \(AC,BD,MN\) đồng quy
Quảng cáo
Trả lời:

Ta có: \(\overrightarrow {OA} = - 3\overrightarrow {OP} \Leftrightarrow \overrightarrow {OA} + 3\overrightarrow {OP} = \vec 0\).
Khi đó: \(3\overrightarrow {AP} - 2\overrightarrow {AC} = 3(\overrightarrow {AO} + \overrightarrow {OP} ) - 2.2\overrightarrow {AO} = \overrightarrow {OA} + 3\overrightarrow {OP} = \vec 0\).
Ta có: \(\overrightarrow {OP} = - \frac{1}{3}\overrightarrow {OA} = \frac{1}{3}\overrightarrow {OC} \Rightarrow P\) là trọng tâm của tam giác \(BCD\), do vậy trung tuyến \(BN\) của tam giác \(BCD\) đi qua trọng tâm \(P\) đó. Vậy ba điểm \(B,P,N\) thẳng hàng.
Nhận xét: \(AC\) và \(BD\) cắt nhau tại tâm \(O\) là trung điểm của mỗi đường.
Mặt khác \(:\overrightarrow {OM} + \overrightarrow {ON} = \frac{1}{2}(\overrightarrow {OA} + \overrightarrow {OB} ) + \frac{1}{2}(\overrightarrow {OC} + \overrightarrow {OD} ) = \frac{1}{2}(\overrightarrow {OA} + \overrightarrow {OC} ) + \frac{1}{2}(\overrightarrow {OB} + \overrightarrow {OD} ) = \vec 0\).
Do đó \(O\) là trung điểm của \(MN\) hay \(AC,BD,MN\) đồng quy tại \(O\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta phân tích \(\overrightarrow {AE} \) và \(\overrightarrow {AF} \) theo 2 vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).
\(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {BC} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} \)
\(\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BF} = \overrightarrow {AB} + \frac{1}{4}(\overrightarrow {AD} - \overrightarrow {AB} ) = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} \).
Xét hệ: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\\{\overrightarrow {AF} = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AD} }\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AE} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\\{\frac{4}{3}\overrightarrow {AF} = \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} }\end{array} \Rightarrow \overrightarrow {AE} = \frac{4}{3}\overrightarrow {AF} } \right.} \right.\)
Câu 2
Lời giải
Chọn A
Ta có: \(2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OA} + 2\overrightarrow {OM} = 4\overrightarrow {OD} \) (1)
Tương tự \(\overrightarrow {OA} + 2\overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OE} \) (2)
\(\overrightarrow {OA} + \overrightarrow {OB} + 2\overrightarrow {OC} = 4\overrightarrow {OF} \) (3)
Cộng vế vói vế (1), (2), (3) ta được đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.