Câu hỏi:

12/10/2025 16 Lưu

Cho tam giác \(ABC\) có trọng tâm \(G\). Gọi các điểm \(D,E,F\) lần lượt là trung điểm của các cạnh \(BC,CA\)\(AB\). Trong các khẳng định sau, khẳng định nào đúng?

A. \(\overrightarrow {AG} = \frac{1}{2}\overrightarrow {AE} + \frac{1}{2}\overrightarrow {AF} \)                                     
B. \(\overrightarrow {AG} = \frac{1}{3}\overrightarrow {AE} + \frac{1}{3}\overrightarrow {AF} \)                                     
C. \(\overrightarrow {AG} = \frac{3}{2}\overrightarrow {AE} + \frac{3}{2}\overrightarrow {AF} \)                                    
D. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AE} + \frac{2}{3}\overrightarrow {AF} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có: \(\overrightarrow {AG}  (ảnh 1)

Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AD}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {2\overrightarrow {AF}  + 2\overrightarrow {AE} } \right) = \frac{2}{3}\overrightarrow {AE}  + \frac{2}{3}\overrightarrow {AF} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {NM}  = \frac{1}{3}\overrightarrow {AB}  - \overrightarrow {AD} ,\overrightarrow {NP}  = \frac{2}{3}\overrightarrow {AB}  - \frac{1}{2}\overrightarrow {AD} \)

Suy ra \(\overrightarrow {NM}  \cdot \overrightarrow {NP}  = \frac{2}{9} \cdot 9 + \frac{1}{2} \cdot 9 = \frac{{13}}{2}\)

Mặt khác \(|\overrightarrow {NM} | = \sqrt {10} ,|\overrightarrow {NP} | = \frac{5}{2} \Rightarrow \cos \widehat {MNP} = \frac{{13}}{{5\sqrt {10} }}.\)

Lời giải

Cho tam giác \(ABC\) có \(M\) là tru (ảnh 1)

a) Do tứ giác \(BHC{A^\prime }\) có \(BH//{A^\prime }C( \bot AC)\) và \(CH//B{A^\prime }( \bot AB)\) nên \(BHC{A^\prime }\) là hình bình hành \( \Rightarrow \overrightarrow {BH}  = \overrightarrow {{A^\prime }C} \)

b) Lại có \(M\) là trung điểm của đường chéo \(BC\) nên \(M\) là trung điểm của \(H{A^\prime }\) hay \(H,M\), \({A^\prime }\) thẳng hàng.

Do \(OM\) là đường trung bình của  nên \(AH = 2OM\), mà \(\overrightarrow {AH} \) và \(\overrightarrow {OM} \) cùng hướng

\( \Rightarrow \overrightarrow {AH}  = 2\overrightarrow {OM} {\rm{. }}\)

c) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HA} \overrightarrow { + HA} \) (Tứ giác \(AHC{A^\prime }\) là hình bình hành \(\overrightarrow {H{A^\prime }}  = \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} \)

d) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {OH}  + \overrightarrow {HB}  + \overrightarrow {OH}  + \overrightarrow {HC}  = 3\overrightarrow {OH}  + \overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC} \)

\( = 3\overrightarrow {OH}  + 2\overrightarrow {HO}  = \overrightarrow {OH} \).

Câu 3

A. O                                                                      
B. I là trung điểm đoạn OA
C. I là trung điểm đoạn OC                          
D. C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Miền (1)                  
B. Miền (2)               
C. Miền (3)                                  
D. Ở ngoài \(\Delta ABC\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP