Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]
a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x - 4}}\].
b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3 - 1}}{{11}}\].
c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.
d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.
Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]
a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x - 4}}\].
b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3 - 1}}{{11}}\].
c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.
d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.
Quảng cáo
Trả lời:
a) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có:
\[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\]
\[ = \frac{{\sqrt x \left( {\sqrt x - 4} \right) + 4\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{x + 16}}\]
\[ = \frac{{x + 16}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{x + 16}}\]\[ = \frac{{\sqrt x }}{{\sqrt x - 4}}.\]
b) Sai. Thay \[x = \sqrt {3 - 2\sqrt 2 } \] (TMĐK) vào biểu thức ta có:
\[B = \frac{{\sqrt {3 - 2\sqrt 2 } }}{{\sqrt {3 - 2\sqrt 2 } - 4}} = \frac{{\sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - 4}} = \frac{{\sqrt 2 - 1}}{{\sqrt 2 - 1 - 4}} = \frac{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 5} \right)}}{{2 - 25}} = \frac{{3 - 4\sqrt 2 }}{{23}}.\]
c) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có: \[B = \frac{{\sqrt x }}{{\sqrt x - 4}}\].
Khi \[x\] là một số chính phương thì \[\sqrt x \in \mathbb{Z}\] thì \[\sqrt x \in \mathbb{Z}\] và \[\sqrt x - 4 \in \mathbb{Z}.\]
Do đó \[B = \frac{{\sqrt x }}{{\sqrt x - 4}} \in \mathbb{Q}.\]
d) Đúng. Khi \[x > 16\] thì \[\sqrt x > 0\] và \[\sqrt x - 4 > 0\]. Do đó \[B = \frac{{\sqrt x }}{{\sqrt x - 4}} > 0.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. \(N = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{3 - 2}} + \frac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{3 - 2}} = 5 + 2\sqrt 6 + 5 - 2\sqrt 6 = 10.\)
Do đó, kết quả phép tính \[N\] là một số nguyên.
b) Đúng. \(P = \frac{3}{{\sqrt 8 + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}} = \frac{{3\left( {\sqrt 8 - \sqrt 5 } \right)}}{{{{\left( {\sqrt 8 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}}} + \frac{{\sqrt 5 \left( {\sqrt 5 - 1} \right)}}{{\sqrt 5 - 1}}\)
\( = \sqrt 8 - \sqrt 5 + \sqrt 5 = \sqrt 8 = 2\sqrt 2 .\)
c) Sai. Vì \[N = 10\,;\,\,\,P = 2\sqrt 2 \]nên \[N < 5P\].
d) Sai. Ta có \[2{x^2} - 20\sqrt 2 x = 0\]
\[2x\left( {x - 10\sqrt 2 } \right) = 0\]
\[x = 0\] hoặc \[x = 10\sqrt 2 \].
Vậy giá trị của biểu thức \[N,\,\,P\] không phải là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]
Lời giải
a) Đúng. Ta có \[A = \sqrt {25{x^2}} - 7x = 5\left| x \right| - 7x.\]
b) Sai. Vì \[x \ge 0\] nên \[A = 5\left| x \right| - 7x = 5x - 7x = - 2x.\]
c) Đúng. Thay \[x = - 3\] vào biểu thức \[A = 5\left| x \right| - 7x = 5 \cdot 3 - 7 \cdot \left( { - 3} \right) = 36.\]
d) Sai. Với \[x < 0\] nên \[A = - 5x - 7x = - 12x\]. Để \[A = 24\] thì \[ - 12x = 24\] nên \[x = - 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
