Bạn Nam dự định tổ chức buổi tiệc sinh nhật và chọn loại ly có phần chứa nước dạng hình nón với bán kính đáy \(R = 4\)cm và độ dài đường sinh \(l = 10\)cm để khách uống nước trái cây.
a) Tính thể tích phần chứa nước của ly (ghi kết quả làm tròn đến hàng đơn vị). Biết công thức thể tích hình nón là \(V = \frac{1}{3}\pi {R^2}h\) (với \(R\) là bán kính đáy hình nón; \(h\) là chiều cao hình nón).
b) Bạn Nam cần chuẩn bị một số hộp nước trái cây có lượng nước trong mỗi hộp là 1,2 lít. Biết rằng buổi tiệc sinh nhật có 14 người (đã bao gồm Nam). Nếu mỗi người trung bình uống 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly thì bạn Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây?
Biết 1 lít = 1000 cm3.
Bạn Nam dự định tổ chức buổi tiệc sinh nhật và chọn loại ly có phần chứa nước dạng hình nón với bán kính đáy \(R = 4\)cm và độ dài đường sinh \(l = 10\)cm để khách uống nước trái cây.
a) Tính thể tích phần chứa nước của ly (ghi kết quả làm tròn đến hàng đơn vị). Biết công thức thể tích hình nón là \(V = \frac{1}{3}\pi {R^2}h\) (với \(R\) là bán kính đáy hình nón; \(h\) là chiều cao hình nón).
b) Bạn Nam cần chuẩn bị một số hộp nước trái cây có lượng nước trong mỗi hộp là 1,2 lít. Biết rằng buổi tiệc sinh nhật có 14 người (đã bao gồm Nam). Nếu mỗi người trung bình uống 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly thì bạn Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây?
Biết 1 lít = 1000 cm3.

Quảng cáo
Trả lời:
a) Theo định lí Pythagore, chiều cao của hình nón là
\(h = \sqrt {{l^2} - {R^2}} = \sqrt {{{10}^2} - {4^2}} = 2\sqrt {21} \) (cm). (0,25 điểm)
Thể tích phần chứa nước của ly là
\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.4^2}.2\sqrt {21} \approx 154\) (cm3). (0,25 điểm)
b) Đổi 1,2 lít = 1200 cm3.
Số ly nước Nam cần chuẩn bị là: 14 . 3 = 42 (ly).
Lượng nước trái cây Nam cần chuẩn bị là: (154 . 90%) . 42 = 5821,2 (cm3). (0,25 điểm)
Ta có: \(\frac{{5821,2}}{{1200}} = 4,851 \approx 5\).
Vậy Nam cần chuẩn bị 5 hộp nước trái cây.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \(HE \bot AB,\,HF \bot AC\) nên \(\widehat {AEH} = \widehat {AFH} = 90^\circ \). Tứ giác \(AEHF\) có \(\widehat {AEH},\,\widehat {AFH}\) là hai góc đối và \(\widehat {AEH} + \,\widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác \(AEHF\) nội tiếp. (0,5 điểm)
Do \(AD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {ALD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Tứ giác \(ALHF\) có \(\widehat {ALH},\,\widehat {AFH}\) là hai góc đối và \(\widehat {ALH} + \,\widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác \(ALHF\) nội tiếp. (0,5 điểm)
b) Ta có: \(AH \bot BC\) và \(HE \bot AB\) nên \(\widehat {EBH} = 90^\circ - \widehat {BHE} = \widehat {AHE}\).
Mà \(\widehat {AHE} = \widehat {AFE}\) (do tứ giác \(AEHF\) nội tiếp).
Suy ra \(\widehat {AFE} = \widehat {EBC}\) (1).
Tứ giác \(BEFC\) có góc ngoài tại đỉnh \(F\) bằng góc trong tại đỉnh \(B\) nên tứ giác \(BEFC\) nội tiếp. (0,5 điểm)
Trong đường tròn \(\left( O \right)\), ta có \(\widehat {ABC} = \widehat {ADC}\) (hai góc nội tiếp chắn cung \(AC\)) (2).
Từ (1) và (2) suy ra \(\widehat {AFE} = \widehat {ADC}\) hay \[\widehat {AFK} = \widehat {KDC}\].
Tứ giác \(CDKF\) có góc ngoài tại đỉnh \(F\) bằng góc trong tại đỉnh \(D\) nên tứ giác \(CDKF\) nội tiếp.
Suy ra \(\widehat {DKF} + \widehat {CKF} = 180^\circ \).
Mặt khác \(\widehat {ACD} = 90^\circ \) (do \(AD\) là đường kính của \(\left( O \right)\)).
Từ đó suy ra \(\widehat {DKF} = 90^\circ \). Suy ra \(AD \bot EF\) tại \(K\). (0,5 điểm)
c) Tứ giác \(APBC\) nội tiếp đường tròn \(\left( O \right)\) nên \(\widehat {APC} = \widehat {ABC}\). (3)
Từ (1) và (3) suy ra \(\widehat {APC} = \widehat {AFE}\).
Do đó, hai tam giác \(APF\) và \(ACP\) đồng dạng (g.g).
Suy ra \(\frac{{AP}}{{AC}} = \frac{{AF}}{{AP}}\).
Nên \(A{P^2} = AC.AF\). (0,25 điểm)
Lại có \(A{H^2} = AC.AF\) (áp dụng hệ thức lượng trong tam giác \(ACH\) vuông tại \(H\) có đường cao \(HF\)).
Do đó, \(A{P^2} = A{H^2}\). Suy ra \(AP = AH\). (0,25 điểm)
Vì các tứ giác \(AEHF,\,ALHF\) nội tiếp nên năm điểm \(A,\,E,\,F,\,H,\,L\) cùng thuộc một đường tròn.
Suy ra tứ giác \(ALEF\) nội tiếp.
Từ đó suy ra \(\widehat {MEL} = \widehat {LAF}\) (cùng bù với \(\widehat {LEF}\)).
Lập luận tương tự với tứ giác nội tiếp \(ALBC\), ta có \(\widehat {MBL} = \widehat {LAC}\).
Từ hai điều trên, suy ra \(\widehat {MBL} = \widehat {MEL}\).
Tứ giác \(MBEL\) có hai đỉnh kề nhau là \(B,\,E\) cùng nhìn cạnh \(ML\) dưới hai góc bằng nhau nên tứ giác \(MBEL\) nội tiếp. (0,25 điểm)
Suy ra \(\widehat {MLE} = \widehat {EBC}\) (cùng bù với \(\widehat {MBE}\)). (4)
Từ (1) và (4) suy ra \(\widehat {MLE} = \widehat {AFE}\).
Lại có \(\widehat {AFE} + \widehat {ALE} = 180^\circ \) (do tứ giác \(ALEF\) nội tiếp).
Do đó, \(\widehat {MLE} + \widehat {ALE} = 180^\circ \).
Vậy ba điểm \(A,\,L,\,M\) thẳng hàng. (0,25 điểm)
Lời giải
- Nếu mua nhiều hơn 10 bông hồng thì từ bông thứ 11 trở đi mỗi bông được giảm thêm 10% trên giá niêm yết, do đó giá mỗi bông hồng từ bông hồng thứ 11 đến 20 là:
15 000 . (100% – 10%) = 13 500 (đồng).
- Nếu mua nhiều hơn 20 bông hồng thì từ bông thứ 21 trở đi mỗi bông được giảm thêm 20% trên giá đã giảm, do đó giá mỗi bông hồng từ bông hồng thứ 21 là:
13 500 . (100% – 20%) = 10 800 (đồng).
a) Nếu khách hàng mua 30 bông hồng thì số tiền phải trả là:
15 000 . 10 + 13 500 . 10 + 10 800 . 10 = 393 000 (đồng). (0,25 điểm)
b) Vì số tiền bạn Thảo phải trả là 555 000 > 393 000 (đồng) nên bạn đã mua nhieuf hơn 30 bông hồng.
Gọi \(x\) là số bông hồng mà bạn Thảo đã mua \(\left( {x \in \mathbb{N},x > 30} \right)\).
Ta có:
\(15000.10 + 13500.10 + 10800\left( {x - 20} \right) = 555000\) (0,25 điểm)
\( \Leftrightarrow x = 45\) (nhận). (0,25 điểm)
Vậy bạn Thảo đã mua 45 bông hồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
