Câu hỏi:

05/11/2025 11 Lưu

Nhà bạn Khanh có hai thùng đựng sữa, thùng thứ nhất có thể tích 10 lít, thùng thứ hai có thể tích 8 lít. Biết rằng cả hai thùng đều đang chứa một lượng sữa và tổng lượng sữa ở hai thùng lớn hơn 10 lít. Bạn Khanh muốn xác định lượng sữa ở mỗi thùng nhưng không có dụng cụ đo thể tích nên bạn đã nghĩ ra cách làm như sau:

- Đầu tiên, Khanh đổ sữa từ thùng thứ nhất sang thùng thứ hai cho đầy thì lượng sữa còn lại ở thùng thứ nhất bằng \(\frac{1}{2}\) lượng sữa so với ban đầu.

- Sau đó, Khanh đổ sữa từ thùng thứ hai sang thùng thứ nhất cho đầy thì lượng sữa còn lại ở thùng thứ hai bằng \(\frac{1}{5}\) lượng sữa so với thời điểm ban đầu.

         Hỏi thời điểm ban đầu mỗi thùng chứa bao nhiêu lít sữa?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi lượng sữa ban đầu của thùng thứ nhất chứa là \(x\) (lít) và lượng sữa thùng thứ hai chứa là \(y\) (lít), ta có \(0 < x \le 10,\,0 < y \le 8\) và tổng lượng sữa \(x + y > 10\).  (0,25 điểm)

- Vì sau khi đổ sữa từ thùng thứ nhất sang thùng thứ hai cho đầy thì thùng thứ hai có 8 lít sữa, còn thùng thứ nhất có \(x + y - 8\) lít sữa.

Lúc này lượng sữa còn lại ở thùng thứ nhất bằng \(\frac{1}{2}\) lượng sữa so với ban đầu nên ta có phương trình:

\(x + y - 8 = \frac{1}{2}x \Leftrightarrow \frac{1}{2}x + y = 8\). (1)

- Vì sau khi đổ sữa từ thùng thứ hai sang thùng thứ nhất cho đầy thì thùng thứ nhất có 10 lít sữa, còn thùng thứ hai có \(x + y - 10\) lít sữa.

Lúc này thùng thứ hai có lượng sữa bằng \(\frac{1}{5}\) lượng sữa so với thời điểm ban đầu nên ta có phương trình:

\(x + y - 10 = \frac{1}{5}y \Leftrightarrow x + \frac{4}{5}y = 10\). (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{2}x + y = 8\\x + \frac{4}{5}y = 10\end{array} \right.\)                                     (0,5 điểm)

\( \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 16\\x + \frac{4}{5}y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{6}{5}y = 6\\x = 10 - \frac{4}{5}y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5\\x = 6\end{array} \right.\) (thỏa mãn).                         (0,25 điểm)

Vậy thời điểm ban đầu thùng thứ nhất chứa 6 lít sữa, thùng thứ hai chứa 5 lít sữa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đổi 1,58 m = 158 cm.

Thay \(T = 158\) và \(N = 2\) vào \(M = T - 100 - \frac{{T - 150}}{N}\), ta có:

\(M = 158 - 100 - \frac{{158 - 150}}{2} = 54\) (kg).

Vậy cân nặng lý tưởng của bạn Hạnh là 54 kg.                                           (0,25 điểm)

b) Thay \(M = 68\) và \(N = 4\) vào \(M = T - 100 - \frac{{T - 150}}{N}\), ta có:

\(68 = T - 100 - \frac{{T - 150}}{4}\)\( \Leftrightarrow \frac{{4T - \left( {T - 150} \right)}}{4} = 168\)\( \Leftrightarrow 3T + 150 = 672\)           (0,25 điểm)

\( \Leftrightarrow 3T = 522 \Leftrightarrow T = 174\) (cm).                                                                      (0,25 điểm)

Vậy để cân nặng của Phúc là lý tưởng thì chiều cao của bạn Phúc cần đạt là 174 cm hay 1,74 m.

Lời giải

- Nếu mua nhiều hơn 10 bông hồng thì từ bông thứ 11 trở đi mỗi bông được giảm thêm 10% trên giá niêm yết, do đó giá mỗi bông hồng từ bông hồng thứ 11 đến 20 là:

15 000 . (100% – 10%) = 13 500 (đồng).

- Nếu mua nhiều hơn 20 bông hồng thì từ bông thứ 21 trở đi mỗi bông được giảm thêm 20% trên giá đã giảm, do đó giá mỗi bông hồng từ bông hồng thứ 21 là:

13 500 . (100% – 20%) = 10 800 (đồng).

a) Nếu khách hàng mua 30 bông hồng thì số tiền phải trả là:

15 000 . 10 + 13 500 . 10 + 10 800 . 10 = 393 000 (đồng).     (0,25 điểm)

b) Vì số tiền bạn Thảo phải trả là 555 000 > 393 000 (đồng) nên bạn đã mua nhieuf hơn 30 bông hồng.

Gọi \(x\) là số bông hồng mà bạn Thảo đã mua \(\left( {x \in \mathbb{N},x > 30} \right)\).

Ta có:

\(15000.10 + 13500.10 + 10800\left( {x - 20} \right) = 555000\)                           (0,25 điểm)

\( \Leftrightarrow x = 45\) (nhận).                                                                               (0,25 điểm)

Vậy bạn Thảo đã mua 45 bông hồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP