Cho phương trình \(2{x^2} - 13x - 6 = 0\) có 2 nghiệm là \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(A = \left( {{x_1} + {x_2}} \right)\left( {{x_1} + 2{x_2}} \right) - x_2^2\).
Cho phương trình \(2{x^2} - 13x - 6 = 0\) có 2 nghiệm là \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(A = \left( {{x_1} + {x_2}} \right)\left( {{x_1} + 2{x_2}} \right) - x_2^2\).
Quảng cáo
Trả lời:
Vì phương trình đã cho có 2 nghiệm là \({x_1},{x_2}\) nên theo định lý Vi-ét, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{13}}{2}\\{x_1}.{x_2} = \frac{c}{a} = \frac{{ - 6}}{2} = - 3\end{array} \right.\). (0,5 điểm)
Ta có:
\(A = \left( {{x_1} + {x_2}} \right)\left( {{x_1} + 2{x_2}} \right) - x_2^2\)
\( = x_1^2 + 2{x_1}{x_2} + {x_2}{x_1} + 2x_2^2 - x_2^2\)
\( = x_1^2 + x_2^2 + 3{x_1}{x_2}\)
\( = {\left( {{x_1} + {x_2}} \right)^2} + {x_1}{x_2}\) (0,25 điểm)
\( = {\left( {\frac{{13}}{2}} \right)^2} + \left( { - 3} \right) = \frac{{157}}{4}\). (0,25 điểm)
Vậy \(A = \frac{{157}}{4}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có: \(HE \bot AB,\,HF \bot AC\) nên \(\widehat {AEH} = \widehat {AFH} = 90^\circ \). Tứ giác \(AEHF\) có \(\widehat {AEH},\,\widehat {AFH}\) là hai góc đối và \(\widehat {AEH} + \,\widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác \(AEHF\) nội tiếp. (0,5 điểm)
Do \(AD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {ALD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Tứ giác \(ALHF\) có \(\widehat {ALH},\,\widehat {AFH}\) là hai góc đối và \(\widehat {ALH} + \,\widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) nên tứ giác \(ALHF\) nội tiếp. (0,5 điểm)
b) Ta có: \(AH \bot BC\) và \(HE \bot AB\) nên \(\widehat {EBH} = 90^\circ - \widehat {BHE} = \widehat {AHE}\).
Mà \(\widehat {AHE} = \widehat {AFE}\) (do tứ giác \(AEHF\) nội tiếp).
Suy ra \(\widehat {AFE} = \widehat {EBC}\) (1).
Tứ giác \(BEFC\) có góc ngoài tại đỉnh \(F\) bằng góc trong tại đỉnh \(B\) nên tứ giác \(BEFC\) nội tiếp. (0,5 điểm)
Trong đường tròn \(\left( O \right)\), ta có \(\widehat {ABC} = \widehat {ADC}\) (hai góc nội tiếp chắn cung \(AC\)) (2).
Từ (1) và (2) suy ra \(\widehat {AFE} = \widehat {ADC}\) hay \[\widehat {AFK} = \widehat {KDC}\].
Tứ giác \(CDKF\) có góc ngoài tại đỉnh \(F\) bằng góc trong tại đỉnh \(D\) nên tứ giác \(CDKF\) nội tiếp.
Suy ra \(\widehat {DKF} + \widehat {CKF} = 180^\circ \).
Mặt khác \(\widehat {ACD} = 90^\circ \) (do \(AD\) là đường kính của \(\left( O \right)\)).
Từ đó suy ra \(\widehat {DKF} = 90^\circ \). Suy ra \(AD \bot EF\) tại \(K\). (0,5 điểm)
c) Tứ giác \(APBC\) nội tiếp đường tròn \(\left( O \right)\) nên \(\widehat {APC} = \widehat {ABC}\). (3)
Từ (1) và (3) suy ra \(\widehat {APC} = \widehat {AFE}\).
Do đó, hai tam giác \(APF\) và \(ACP\) đồng dạng (g.g).
Suy ra \(\frac{{AP}}{{AC}} = \frac{{AF}}{{AP}}\).
Nên \(A{P^2} = AC.AF\). (0,25 điểm)
Lại có \(A{H^2} = AC.AF\) (áp dụng hệ thức lượng trong tam giác \(ACH\) vuông tại \(H\) có đường cao \(HF\)).
Do đó, \(A{P^2} = A{H^2}\). Suy ra \(AP = AH\). (0,25 điểm)
Vì các tứ giác \(AEHF,\,ALHF\) nội tiếp nên năm điểm \(A,\,E,\,F,\,H,\,L\) cùng thuộc một đường tròn.
Suy ra tứ giác \(ALEF\) nội tiếp.
Từ đó suy ra \(\widehat {MEL} = \widehat {LAF}\) (cùng bù với \(\widehat {LEF}\)).
Lập luận tương tự với tứ giác nội tiếp \(ALBC\), ta có \(\widehat {MBL} = \widehat {LAC}\).
Từ hai điều trên, suy ra \(\widehat {MBL} = \widehat {MEL}\).
Tứ giác \(MBEL\) có hai đỉnh kề nhau là \(B,\,E\) cùng nhìn cạnh \(ML\) dưới hai góc bằng nhau nên tứ giác \(MBEL\) nội tiếp. (0,25 điểm)
Suy ra \(\widehat {MLE} = \widehat {EBC}\) (cùng bù với \(\widehat {MBE}\)). (4)
Từ (1) và (4) suy ra \(\widehat {MLE} = \widehat {AFE}\).
Lại có \(\widehat {AFE} + \widehat {ALE} = 180^\circ \) (do tứ giác \(ALEF\) nội tiếp).
Do đó, \(\widehat {MLE} + \widehat {ALE} = 180^\circ \).
Vậy ba điểm \(A,\,L,\,M\) thẳng hàng. (0,25 điểm)
Lời giải
- Nếu mua nhiều hơn 10 bông hồng thì từ bông thứ 11 trở đi mỗi bông được giảm thêm 10% trên giá niêm yết, do đó giá mỗi bông hồng từ bông hồng thứ 11 đến 20 là:
15 000 . (100% – 10%) = 13 500 (đồng).
- Nếu mua nhiều hơn 20 bông hồng thì từ bông thứ 21 trở đi mỗi bông được giảm thêm 20% trên giá đã giảm, do đó giá mỗi bông hồng từ bông hồng thứ 21 là:
13 500 . (100% – 20%) = 10 800 (đồng).
a) Nếu khách hàng mua 30 bông hồng thì số tiền phải trả là:
15 000 . 10 + 13 500 . 10 + 10 800 . 10 = 393 000 (đồng). (0,25 điểm)
b) Vì số tiền bạn Thảo phải trả là 555 000 > 393 000 (đồng) nên bạn đã mua nhieuf hơn 30 bông hồng.
Gọi \(x\) là số bông hồng mà bạn Thảo đã mua \(\left( {x \in \mathbb{N},x > 30} \right)\).
Ta có:
\(15000.10 + 13500.10 + 10800\left( {x - 20} \right) = 555000\) (0,25 điểm)
\( \Leftrightarrow x = 45\) (nhận). (0,25 điểm)
Vậy bạn Thảo đã mua 45 bông hồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

