Thu gọn biểu thức sau: \(A = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{14 - 6\sqrt 3 }}{{5 + \sqrt 3 }}} \).
Thu gọn biểu thức sau: \(A = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{14 - 6\sqrt 3 }}{{5 + \sqrt 3 }}} \).
Quảng cáo
Trả lời:
Ta có:
\(A = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{14 - 6\sqrt 3 }}{{5 + \sqrt 3 }}} \) \[ = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{\left( {14 - 6\sqrt 3 } \right)\left( {5 - \sqrt 3 } \right)}}{{\left( {5 + \sqrt 3 } \right)\left( {5 - \sqrt 3 } \right)}}} \]
\[ = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{88 - 44\sqrt 3 }}{{22}}} = \left( {\sqrt 3 + 1} \right)\sqrt {4 - 2\sqrt 3 } \]
\[ = \left( {\sqrt 3 + 1} \right)\sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} = \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right) = 3 - 1 = 2\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vẽ đồ thị hàm số \(y = \frac{1}{4}{x^2}\).
Tập xác định \[D = \mathbb{R}\].
Bảng giá trị
|
\[x\,\] |
\[ - 2\] |
\[ - 1\] |
0 |
1 |
2 |
|
\[y\] |
1 |
\[\frac{1}{4}\] |
0 |
\[\frac{1}{4}\] |
1 |
Đồ thị

b) Đường thẳng \[\left( D \right)\]: \(y = \frac{3}{2}x + m\) đi qua điểm \[C\left( {6;\,7} \right)\]nên ta có:
\[7 = \frac{3}{2}.6 + m \Leftrightarrow m = - 2\].
Vậy đường thẳng \[\left( D \right)\] có phương trình \[y = \frac{3}{2}x - 2\].
Phương trình hoành độ giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[\frac{1}{4}{x^2} = \frac{3}{2}x - 2\]
\[ \Leftrightarrow \frac{1}{4}{x^2} - \frac{3}{2}x + 2 = 0 \Leftrightarrow {x^2} - 6x + 8 = 0\]
Ta có: \[\Delta ' = {\left( { - 3} \right)^2} - 1.8 = 1 > 0\]. Phương trình có hai nghiệm \[{x_1} = 3 + 1 = 4,\,{x_2} = 3 - 1 = 2\]
Khi đó, \[{y_1} = \frac{3}{2}{x_1} - 2 = \frac{3}{2}.4 - 2 = 4,\,{y_2} = \frac{3}{2}{x_2} - 2 = \frac{3}{2}.2 - 2 = 1\].
Vậy tọa độ các giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[A\left( {4;\,\,4} \right),\,\,B\left( {2;\,\,1} \right)\].
Lời giải
Phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 1 = 0\] (1).
a) Ta có \[a = 1 \ne 0\] và \[\Delta = {\left( {2m - 1} \right)^2} - 4.1.\left( {{m^2} - 1} \right) = - 4m + 5\]. Phương trình (1) có hai nghiệm phân biệt khi \[\Delta > 0 \Leftrightarrow - 4m + 5 > 0 \Leftrightarrow m < \frac{5}{4}\].
b) Theo câu a, với điều kiện \[m < \frac{5}{4}\], phương trình (1) có hai nghiệm \[{x_1},\,{x_2}\], theo định lí Vi-et ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\\{x_1}.{x_2} = {m^2} - 1\end{array} \right.\].
Ta có: \[{\left( {{x_1} - {x_2}} \right)^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}.{x_2} = {\left( {2m - 1} \right)^2} - 4\left( {{m^2} - 1} \right) = - 4m + 5\].
Theo đề bài \[{\left( {{x_1} - {x_2}} \right)^2} = {x_1} - 3{x_2}\]\[ \Leftrightarrow {x_1} - 3{x_2} = - 4m + 5\]
\[ \Leftrightarrow {x_1} + {x_2} - 4{x_2} = - 4m + 5\]
\[ \Leftrightarrow \left( {2m - 1} \right) - 4{x_2} = - 4m + 5\]
\[ \Leftrightarrow 4{x_2} = 2m - 1 + 4m - 5\]
\[ \Leftrightarrow 4{x_2} = 6m - 6\]
\[ \Leftrightarrow {x_2} = \frac{{3m - 3}}{2}\]
Suy ra \[{x_1} = 2m - 1 - {x_2} = 2m - 1 - \frac{{3m - 3}}{2} = \frac{{m + 1}}{2}\].
Ta có: \[{x_1}.{x_2} = \frac{{m + 1}}{2}.\frac{{3m - 3}}{2} = {m^2} - 1\]
Từ đó suy ra \[m = \pm 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.