Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm \[A\]) đến trường (điểm \[B\]) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng \[AB\] dài 762 m, góc \[A\] = 6°, góc \[B\] = 4°.
a) Tính chiều cao \(h\) của con dốc.
b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4 km/h và tốc độ trung bình xuống dốc là 19 km/h.
Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm \[A\]) đến trường (điểm \[B\]) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng \[AB\] dài 762 m, góc \[A\] = 6°, góc \[B\] = 4°.
a) Tính chiều cao \(h\) của con dốc.
b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4 km/h và tốc độ trung bình xuống dốc là 19 km/h.
Quảng cáo
Trả lời:

a) Xét tam giác \[ABC\] có đường cao \[CH\], ta có:
\[AH = \frac{{CH}}{{\tan 6^\circ }};\,\,BH = \frac{{CH}}{{\tan 4^\circ }}\]
Mà \[AH + BH = AB = 762 \Rightarrow \frac{{CH}}{{\tan 6^\circ }} + \frac{{CH}}{{\tan 4^\circ }} = 762\]
Suy ra \[CH = 762:\left( {\frac{1}{{\tan 6^\circ }} + \frac{1}{{\tan 4^\circ }}} \right) \approx 32\].
Vậy \[h = 32\] m.
b) Xét tam giác \[ABC\] có đường cao \[CH\], ta có:
\[\sin 6^\circ = \frac{{CH}}{{AC}} \Rightarrow AC = \frac{{CH}}{{\sin 6^\circ }} \approx \frac{{32}}{{\sin 6^\circ }} \approx 306\];
\[\sin 4^\circ = \frac{{CH}}{{BC}} \Rightarrow BC = \frac{{CH}}{{\sin 4^\circ }} \approx \frac{{32}}{{\sin 4^\circ }} \approx 459\].
Thời gian di chuyển từ \[A\] đến \[B\]:
- Thời gian đi từ \[A\] đến \[C\]: \[{t_{AC}} = \frac{{AC}}{4} \approx \frac{{\frac{{306}}{{1000}}}}{4} = 0,0765\] (giờ)
- Thời gian di chuyển từ \[C\] đến \[B\]: \[{t_{CB}} = \frac{{CB}}{{19}} \approx \frac{{\frac{{459}}{{1000}}}}{{19}} \approx 0,024\](giờ)
- Thời gian di chuyển từ \[A\] đến \[B\]: \[{t_{AB}} = 0,0765 + 0,024 = 0,1005\](giờ) \[ \approx 6\] (phút).
Vậy bạn An đến trường lúc 6 giờ 6 phút.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \[\widehat {ADB} = 90^\circ \] (góc nội tiếp chẵn nửa đường tròn) \[ \Rightarrow \widehat {ADC} = 90^\circ \]
\[ \Rightarrow \widehat {ADC} = \widehat {AHC}\]\[ \Rightarrow ACDH\] nội tiếp.
\[ \Rightarrow \widehat {CHD} = \widehat {CAD}\]
Mà \[\widehat {CAD} = \widehat {ABC}\] nên \[\widehat {CHD} = \widehat {ABC}\].
b) Ta có: \[OH.OC = O{A^2} = O{B^2} \Rightarrow \frac{{OH}}{{OB}} = \frac{{OB}}{{OC}}\]
.
\[ \Rightarrow \widehat {OHB} = \widehat {OBC} \Rightarrow \widehat {OHB} = \widehat {CHD}\]
\[ \Rightarrow \widehat {BHM} = \widehat {DHM}\] hay \[HM\] là tia phân giác của góc \[BHD\].

c) Tam giác \[DHB\] có \[HM\] là phân giác trong \[ \Rightarrow \frac{{MD}}{{MB}} = \frac{{HD}}{{HB}}\]
Tam giác \[DHB\] có \[HC\] là phân giác ngoài \[ \Rightarrow \frac{{CD}}{{CB}} = \frac{{HD}}{{HB}}\]
Vậy \[\frac{{MD}}{{MB}} = \frac{{CD}}{{CB}} \Rightarrow MD.BC = MB.CD\].
Cách 1. Từ trên suy ra \[MD.\left( {MB + MC} \right) = MB.\left( {MC - MD} \right)\]
\[ \Rightarrow 2MB.MD = MC\left( {MB - MD} \right)\]
\[ \Rightarrow 2MB.MD = 2MK.MC\]
\[ \Rightarrow MB.MD = MK.MC\]
Cách 2. Gọi \[L\] là giao điểm của \[AE\] với đường tròn \[\left( O \right)\].
5 điểm \[A,\,O,\,K,\,L,\,C\] cùng thuộc đường tròn.
\[ \Rightarrow MK.MC = MA.ML\]
Mà \[MA.ML = MB.MD\]\[ \Rightarrow MB.MD = MK.MC\].
d) Gọi \[N\] là giao điểm của \[CO\,\]với đường tròn \[\left( O \right)\].
\[ \Rightarrow \widehat {IJN} = 90^\circ \,\,\left( 1 \right)\]
Mặt khác: \[MI.MJ = MD.MB = MK.MC\]
\[ \Rightarrow \widehat {MCI} = \widehat {MJK} = \widehat {MEO}\]
\[ \Rightarrow MEJK\] nội tiếp.
\[ \Rightarrow \widehat {EJM} = 90^\circ \,\,\,\,\left( 2 \right)\]
Từ (1) và (2) \[ \Rightarrow E,\,\,J,\,\,N\] thẳng hàng.
Suy ra hai đường thẳng \[OC\] và \[EJ\] cắt nhau tại một điểm nằm trên \[\,\left( O \right)\].
Lời giải
a) Vẽ đồ thị hàm số \(y = \frac{1}{4}{x^2}\).
Tập xác định \[D = \mathbb{R}\].
Bảng giá trị
|
\[x\,\] |
\[ - 2\] |
\[ - 1\] |
0 |
1 |
2 |
|
\[y\] |
1 |
\[\frac{1}{4}\] |
0 |
\[\frac{1}{4}\] |
1 |
Đồ thị

b) Đường thẳng \[\left( D \right)\]: \(y = \frac{3}{2}x + m\) đi qua điểm \[C\left( {6;\,7} \right)\]nên ta có:
\[7 = \frac{3}{2}.6 + m \Leftrightarrow m = - 2\].
Vậy đường thẳng \[\left( D \right)\] có phương trình \[y = \frac{3}{2}x - 2\].
Phương trình hoành độ giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[\frac{1}{4}{x^2} = \frac{3}{2}x - 2\]
\[ \Leftrightarrow \frac{1}{4}{x^2} - \frac{3}{2}x + 2 = 0 \Leftrightarrow {x^2} - 6x + 8 = 0\]
Ta có: \[\Delta ' = {\left( { - 3} \right)^2} - 1.8 = 1 > 0\]. Phương trình có hai nghiệm \[{x_1} = 3 + 1 = 4,\,{x_2} = 3 - 1 = 2\]
Khi đó, \[{y_1} = \frac{3}{2}{x_1} - 2 = \frac{3}{2}.4 - 2 = 4,\,{y_2} = \frac{3}{2}{x_2} - 2 = \frac{3}{2}.2 - 2 = 1\].
Vậy tọa độ các giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[A\left( {4;\,\,4} \right),\,\,B\left( {2;\,\,1} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.