Câu hỏi:

05/11/2025 69 Lưu

Cho phương trình: \[2{x^2} - 5x - 3 = 0\] có hai nghiệm là \[{x_1},\,{x_2}\].

Không giải phương trình, hãy tính giá trị của biểu thức: \[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[{x_1},\,{x_2}\] là nghiệm của phương trình \[2{x^2} - 5x - 3 = 0\].

Áp dụng hệ thức Vi-et ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{5}{2}\\{x_1}{x_2} = \frac{{ - 3}}{2}\end{array} \right.\]

\[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\]

\[ = {x_1}{x_2} + 2x_1^2 + 2x_2^2 + 4{x_1}{x_2}\]

\[ = 2\left( {x_1^2 + x_2^2} \right) + 5{x_1}{x_2}\]

\[ = 2{\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} + 5{x_1}{x_2}\]

\[ = 2{\left( {{x_1} + {x_2}} \right)^2} + {x_1}{x_2}\]

\[ = 2.{\left( {\frac{5}{2}} \right)^2} + \left( { - \frac{3}{2}} \right) = 11\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn tâm O, bán kính R và điểm A nằm ngoài đường tròn sao cho OA > 2R. Từ A kẻ 2 tiếp tuyến  (ảnh 1)

a)

Ta có:\[JM = JE\] (tính chất hai tiếp tuyến cắt nhau) và \[OM = OE\] (bán kính).

\[ \Rightarrow OJ\] là đường trung trực của \[ME\].

Từ đó suy ra \[\Delta OMJ = \Delta OEJ\] (c – c – c).

\[ \Rightarrow \widehat {MOF} = \widehat {EOF}\]

Từ đó suy ra \[\Delta OMF = \Delta OEF\] (c – g – c).

\[ \Rightarrow \widehat {OMF} = \widehat {OEF}\].

b)
Ta có \[\widehat {OMI} = \widehat {ODI} = 90^\circ \] (định nghĩa tiếp tuyến tại điểm).

Suy ra tứ giác \[ODIM\] nội tiếp (1).

Xét tam giác \[\Delta OED\] có \[\widehat {OED} = \widehat {ODE}\] (do \[OD = OE = R\])

Theo ý a) ta có \[\widehat {OMF} = \widehat {OEF}\] nên ta có \[\widehat {ODE} = \widehat {ODF} = \widehat {OMF}\]

Suy ra tứ giác \[ODMF\] nội tiếp (do cùng chắn cung \[OF\]) (2).

Từ (1) và (2) suy ra 5 điểm \[I;\,D;\,O;\,F;\,M\]cùng nằm trên một đường tròn.

c)
+) Ta có tứ giác\[IDOF\]nội tiếp (do 5 điểm \[I;\,D;\,O;\,F;\,M\]cùng nằm trên một đường tròn).

\[ \Rightarrow \widehat {DIO} = \widehat {DFO}\]  (cùng chắn cung DO )

\[ \Rightarrow \widehat {AIO} = \widehat {EFO}\] (2 góc kề bù tương ứng) (3)

Ta lại có tứ giác \[ADOE\] nội tiếp (do \[\widehat {ADO} = \widehat {AEO} = 90^\circ \])

\[ \Rightarrow \widehat {DAO} = \widehat {DEO}\] (4)

Từ (3) và (4) suy ra  (g – g).                             

\[ \Rightarrow \widehat {IOA} = \widehat {EOF}\]

Mà \[\widehat {EOF} = \widehat {JOM}\]

Nên \[\widehat {IOA} = \widehat {JOM}\].

+) Ta có \[\sin \widehat {IOA} = \sin \widehat {JOM} = \frac{{MJ}}{{OJ}}\]  (5).

Mặt khác \[JMFO\] nội tiếp (do ý b) nên ta có \[\widehat {JMF} = \widehat {JOI}\].

Suy ra  (g – g) \[ \Rightarrow \frac{{MJ}}{{JO}} = \frac{{MF}}{{OI}}\](6)

Từ (5) và (6) suy ra \[\sin \widehat {IOA} = \frac{{MF}}{{IO}}\].