Cho phương trình: \[2{x^2} - 5x - 3 = 0\] có hai nghiệm là \[{x_1},\,{x_2}\].
Không giải phương trình, hãy tính giá trị của biểu thức: \[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\].
Cho phương trình: \[2{x^2} - 5x - 3 = 0\] có hai nghiệm là \[{x_1},\,{x_2}\].
Không giải phương trình, hãy tính giá trị của biểu thức: \[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\].
Quảng cáo
Trả lời:
Ta có \[{x_1},\,{x_2}\] là nghiệm của phương trình \[2{x^2} - 5x - 3 = 0\].
Áp dụng hệ thức Vi-et ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{5}{2}\\{x_1}{x_2} = \frac{{ - 3}}{2}\end{array} \right.\]
\[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\]
\[ = {x_1}{x_2} + 2x_1^2 + 2x_2^2 + 4{x_1}{x_2}\]
\[ = 2\left( {x_1^2 + x_2^2} \right) + 5{x_1}{x_2}\]
\[ = 2{\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} + 5{x_1}{x_2}\]
\[ = 2{\left( {{x_1} + {x_2}} \right)^2} + {x_1}{x_2}\]
\[ = 2.{\left( {\frac{5}{2}} \right)^2} + \left( { - \frac{3}{2}} \right) = 11\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a)
Ta có:\[JM = JE\] (tính chất hai tiếp tuyến cắt nhau) và \[OM = OE\] (bán kính).
\[ \Rightarrow OJ\] là đường trung trực của \[ME\].
Từ đó suy ra \[\Delta OMJ = \Delta OEJ\] (c – c – c).
\[ \Rightarrow \widehat {MOF} = \widehat {EOF}\]
Từ đó suy ra \[\Delta OMF = \Delta OEF\] (c – g – c).
\[ \Rightarrow \widehat {OMF} = \widehat {OEF}\].
b)
Ta có \[\widehat {OMI} = \widehat {ODI} = 90^\circ \] (định nghĩa tiếp tuyến tại điểm).
Suy ra tứ giác \[ODIM\] nội tiếp (1).
Xét tam giác \[\Delta OED\] có \[\widehat {OED} = \widehat {ODE}\] (do \[OD = OE = R\])
Theo ý a) ta có \[\widehat {OMF} = \widehat {OEF}\] nên ta có \[\widehat {ODE} = \widehat {ODF} = \widehat {OMF}\]
Suy ra tứ giác \[ODMF\] nội tiếp (do cùng chắn cung \[OF\]) (2).
Từ (1) và (2) suy ra 5 điểm \[I;\,D;\,O;\,F;\,M\]cùng nằm trên một đường tròn.
c)
+) Ta có tứ giác\[IDOF\]nội tiếp (do 5 điểm \[I;\,D;\,O;\,F;\,M\]cùng nằm trên một đường tròn).
\[ \Rightarrow \widehat {DIO} = \widehat {DFO}\] (cùng chắn cung DO )
\[ \Rightarrow \widehat {AIO} = \widehat {EFO}\] (2 góc kề bù tương ứng) (3)
Ta lại có tứ giác \[ADOE\] nội tiếp (do \[\widehat {ADO} = \widehat {AEO} = 90^\circ \])
\[ \Rightarrow \widehat {DAO} = \widehat {DEO}\] (4)
Từ (3) và (4) suy ra (g – g).
\[ \Rightarrow \widehat {IOA} = \widehat {EOF}\]
Mà \[\widehat {EOF} = \widehat {JOM}\]
Nên \[\widehat {IOA} = \widehat {JOM}\].
+) Ta có \[\sin \widehat {IOA} = \sin \widehat {JOM} = \frac{{MJ}}{{OJ}}\] (5).
Mặt khác \[JMFO\] nội tiếp (do ý b) nên ta có \[\widehat {JMF} = \widehat {JOI}\].
Suy ra (g – g) \[ \Rightarrow \frac{{MJ}}{{JO}} = \frac{{MF}}{{OI}}\](6)
Từ (5) và (6) suy ra \[\sin \widehat {IOA} = \frac{{MF}}{{IO}}\].
Lời giải
Gọi \[x\] là số xe mà anh Thành bán được trong tháng 5.
Theo đề ta có phương trình
\[8\,000\,000 + \left( {x - 31} \right).8\% .2\,500\,000 = \,9800\,000\]
Giải phương trình trên ta được \[x = 40\].
Vậy anh Thành bán được 40 chiếc xe máy trong tháng 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
