Câu hỏi:

07/11/2025 48 Lưu

Cho góc \(0^\circ \le \alpha \le 180^\circ \) thỏa mãn \(\tan \alpha = 4\). Giá trị của biểu thức \[A = \frac{{\sin \alpha + \cos \alpha }}{{\sin \alpha - 3\cos \alpha }}\]

A. \(A = 1\);                   
B. \(A = \frac{1}{2}\);      
C. \(A = \frac{1}{5}\);                   
D. \(A = 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Xét biểu thức \[A = \frac{{\sin \alpha + \cos \alpha }}{{\sin \alpha - 3\cos \alpha }}\]

Ta có \(\tan \alpha = 4\) nên \(cos\alpha \ne 0\).

Chia cả tử và mẫu của biểu thức A cho \(cos\alpha \ne 0\), ta được:

\[A = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\cos \alpha }}}}{{\frac{{\sin \alpha }}{{\cos \alpha }} - 3\frac{{\cos \alpha }}{{\cos \alpha }}}} = \frac{{\tan \alpha + 1}}{{\tan \alpha - 3}}\].

Thay \(\tan \alpha = 4\)vào biểu thức trên ta được \[A = \frac{{4 + 1}}{{4 - 3}} = \frac{5}{1} = 5\].

Vậy giá trị biểu thức A là 5 khi \(\tan \alpha = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác \(ABC\), có:

Áp dụng định lí sin trong tam giác \(ABC\), ta được:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow R = \frac{a}{{2\sin A}} = \frac{b}{{2\sin B}} = \frac{c}{{2\sin C}}\).

Do đó A đúng, B sai.

Diện tích tam giác ABC là:

\(S = pr = \frac{{abc}}{{4R}} \Leftrightarrow R = \frac{{abc}}{{4S}} = \frac{{abc}}{{4pr}}\).

Do đó C và D đúng.

Câu 2

A. x2y0x+3y2
B. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \ge - 2\end{array} \right.\);     
C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le - 2\end{array} \right.\);     
D. \(\left\{ \begin{array}{l}x - 2y \ge 0\\x + 3y \le - 2\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Lấy điểm (0; 1) thuộc vào miền nghiệm của hệ bất phương trình cần tìm.

Xét đường thẳng d1: \(x + 3y + 2 = 0 \Leftrightarrow x + 3y = - 2\)

Tại điểm (0; 1) có: \(0 + 3.1 = 3 > - 2\), miền nghiệm D1 của bất phương trình có bờ là đường thẳng d1 là nửa mặt phẳng chứa điểm (0; 1) và kể biên nên biểu diễn cho bất phương trình \(x + 3y \ge - 2\). (1)

Xét đường thẳng d2: \(x - 2y = 0\)

Tại điểm (0; 1) có: \(0 - 2.1 = - 2 < 0\), miền nghiệm D2 của bất phương trình có bờ là đường thẳng d2 là nửa mặt phẳng chứa điểm (0; 1) và kể biên nên biểu diễn cho bất phương trình \(x - 2y \le 0\). (2)

Từ (1) và (2) ta có hệ bất phương trình cần tìm là: \(\left\{ \begin{array}{l}x + 3y \ge - 2\\x - 2y \le 0\end{array} \right.\).

Câu 5

A. \(\overrightarrow {CB} \);                                 
B. \(\overrightarrow {AC} \);                          
C. \(\overrightarrow {MN} \);    
D. \(\overrightarrow {BN} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CA} \);                                              
B. \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
C. \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \);                                              
D. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP