Cho tam giác \(ABC\) có \(R,r\) lần lượt là bán kính đường tròn ngoại tiếp, đường tròn nội tiếp tam giác \(ABC\), \(S\) là diện tích tam giác \(ABC\) và \(p\) là nửa chu vi tam giác \(ABC\). Công thức tính bán kính ngoại tiếp đường tròn ngoại tiếp tam giác \(ABC\) nào sau đây sai?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét tam giác \(ABC\), có:
Áp dụng định lí sin trong tam giác \(ABC\), ta được:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow R = \frac{a}{{2\sin A}} = \frac{b}{{2\sin B}} = \frac{c}{{2\sin C}}\).
Do đó A đúng, B sai.
Diện tích tam giác ABC là:
\(S = pr = \frac{{abc}}{{4R}} \Leftrightarrow R = \frac{{abc}}{{4S}} = \frac{{abc}}{{4pr}}\).
Do đó C và D đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số sản phẩm A là \(x\) (sản phẩm) và số sản phẩm B là \(y\) (sản phẩm) \(\left( {x,\,\,y \ge 0} \right)\).
Tổng thời gian lắp ráp \(x\) sản phẩm A và \(y\) sản phẩm B là: \(3x + 3y\) (giờ).
Vì thời gian để lắp ráp không quá \(360\) giờ nên ta có: \(3x + 3y \le 360\) hay \(x + y \le 120\).
Tổng thời gian đóng gói \(x\) sản phẩm A và \(y\) sản phẩm B là: \(x + 2y\) (giờ).
Vì thời gian để lắp ráp không quá 200 giờ nên ta có: \(x + 2y \le 200\).
Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 120\\x + 2y \le 200\end{array} \right.\).
Biểu diễn miền nghiệm với \({d_1}:x + y = 120\) và \({d_2}:x + 2y = 200\), ta được:

Miền nghiệm của hệ bất phương trình là miền trong của tứ giác OABC với O(0; 0), A(0; 100), B(40; 80), C(120; 0).
Goi F(x; y) là lợi nhuận thu được khi bán x sản phẩm A và y sản phẩm B.
Khi đó \(F\left( {x;y} \right) = 2x + 3y\)
Tại O(0; 0), có \(F\left( {0;0} \right) = 2.0 + 3.0 = 0\).
Tại A(0; 100), có: \(F\left( {0;100} \right) = 2.0 + 3.100 = 300\).
Tại B(40; 80), có: \(F\left( {40;80} \right) = 2.40 + 3.80 = 320\).
Tại C(120; 0), có: \(F\left( {120;0} \right) = 2.120 + 3.0 = 240\).
Vậy để thu được lợi nhuận lớn nhất là 320 triệu đồng thì cần sản xuất 40 sản phẩm A và 80 sản phẩm B.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Áp dụng quy tắc ba điểm, ta có:
\(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CB} + \overrightarrow {BA} = \overrightarrow {CA} \). Do đó A đúng.
\(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {CA} + \overrightarrow {AB} = \overrightarrow {CB} \ne \overrightarrow {BC} \). Do đó B sai.
Áp dụng quy tắc hiệu hai vectơ:
\(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \ne \overrightarrow {BC} \). Do đó C sai.
Áp dụng quy tắc hình bình hành:
\(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \ne \overrightarrow {BC} \)(với D là điểm thỏa mãn ABDC là hình bình hành). Do đó D sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
