(1,0 điểm) Cho tam giác \(ABC\) có \(\widehat A = 120^\circ \) và \(AB = AC = a\). Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM\) và bán kính đường tròn nội tiếp tam giác \(ABM\).
(1,0 điểm) Cho tam giác \(ABC\) có \(\widehat A = 120^\circ \) và \(AB = AC = a\). Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM\) và bán kính đường tròn nội tiếp tam giác \(ABM\).
Quảng cáo
Trả lời:
Hướng dẫn giải
+) Xét tam giác ABC, có AB = AC = a nên tam giác ABC cân tại A
\( \Rightarrow \widehat {ABC} = \widehat {ACB} = \frac{1}{2}\left( {180^\circ - \widehat {BAC}} \right) = \frac{1}{2}\left( {180^\circ - 120^\circ } \right) = 30^\circ \).
Áp dụng định lí cosin trong tam giác ABC, ta được:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.c{\rm{os}}\widehat {BAC}\)
\( \Leftrightarrow B{C^2} = {a^2} + {a^2} - 2.a.a.c{\rm{os120}}^\circ \)
\( \Leftrightarrow B{C^2} = 3{a^2}\)
\( \Leftrightarrow BC = \sqrt 3 a\)
\( \Rightarrow BM = \frac{{2BC}}{5} = \frac{{2\sqrt 3 a}}{5}\).
Áp dụng định lí cosin trong tam giác ABM, ta được:
\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.c{\rm{os}}\widehat {ABM}\)
\( \Leftrightarrow A{M^2} = {a^2} + {\left( {\frac{{2\sqrt 3 a}}{5}} \right)^2} - 2.a.\frac{{2\sqrt 3 a}}{5}.c{\rm{os30}}^\circ \)
\( \Leftrightarrow A{M^2} = \frac{7}{{25}}{a^2}\)
\( \Leftrightarrow AM = \frac{{\sqrt 7 }}{5}a\).
Vậy \(AM = \frac{{\sqrt 7 }}{5}a\).
+) Diện tích tam giác \(ABM\) là:
\({S_{ABM}} = \frac{1}{2}.AB.BM.\sin \widehat {ABM} = \frac{1}{2}.a.\frac{{2\sqrt 3 a}}{5}.\sin 30^\circ = \frac{{\sqrt 3 }}{{10}}\) (đvdt).
Chu vi tam giác \(ABM\) là:
\(p = AB + AM + BM = a + \frac{{\sqrt 7 }}{5}a + \frac{{2\sqrt 3 }}{5}a = \frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a\) (đvđd).
Bán kính đường tròn nội tiếp tam giác ABC là:
\(r = \frac{S}{p} = \left( {\frac{{\sqrt 3 }}{{10}}{a^2}} \right):\left( {\frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a} \right) \approx 0,12a\).
Vậy bán kính đường tròn nội tiếp tam giác \(ABC\) là \(0,12a\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Xét tam giác \(ABC\), có:
\(K\) là trung điểm \(AB\),
\(N\) là trung điểm \(AC\)
Suy ra \(KN\) là đường trung bình của tam giác \(ABC\)
\( \Rightarrow KN\parallel BC\)
Do đó vectơ \(\overrightarrow {KN} \) cùng phương với \(\overrightarrow {CB} \).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Giả sử sau \(1,2\) giờ thì tàu thứ nhất đến vị trí \(B\), tàu thứ hai đến được vị trí \(C\).
Sau \(1,2\) giờ:
Tàu thứ nhất đi được quãng đường \(AB\) dài: \(25\,\,.\,\,1,2 = 30\,\,\left( {km} \right)\).
Tàu thứ hai đi được quãng đường \(AC\) dài: \(35\,\,.\,\,1,2 = 42\,\,\left( {km} \right)\).
Xét tam giác ABC:
Áp dụng định lí cos trong tam giác ABC, ta được:
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
\( \Leftrightarrow B{C^2} = {30^2} + {42^2} - 2.30.42.\cos \left( {50^\circ 35'} \right)\)
\( \Leftrightarrow B{C^2} \approx 1\,\,063,91\)
\( \Leftrightarrow BC \approx 32,62\).
Vậy sau 1,2 giờ thì khoảng cách giữa hai tàu khoảng \(32,62\,\,km\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




