Câu hỏi:

07/11/2025 10 Lưu

(1,0 điểm) Cho tam giác \(ABC\)  \(\widehat A = 120^\circ \)\(AB = AC = a\). Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM\) và bán kính đường tròn nội tiếp tam giác \(ABM\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

+) Xét tam giác ABC, có AB = AC = a nên tam giác ABC cân tại A

\( \Rightarrow \widehat {ABC} = \widehat {ACB} = \frac{1}{2}\left( {180^\circ - \widehat {BAC}} \right) = \frac{1}{2}\left( {180^\circ - 120^\circ } \right) = 30^\circ \).

Áp dụng định lí cosin trong tam giác ABC, ta được:

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.c{\rm{os}}\widehat {BAC}\)

\( \Leftrightarrow B{C^2} = {a^2} + {a^2} - 2.a.a.c{\rm{os120}}^\circ \)

\( \Leftrightarrow B{C^2} = 3{a^2}\)

\( \Leftrightarrow BC = \sqrt 3 a\)

\( \Rightarrow BM = \frac{{2BC}}{5} = \frac{{2\sqrt 3 a}}{5}\).

Áp dụng định lí cosin trong tam giác ABM, ta được:

\(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.c{\rm{os}}\widehat {ABM}\)

\( \Leftrightarrow A{M^2} = {a^2} + {\left( {\frac{{2\sqrt 3 a}}{5}} \right)^2} - 2.a.\frac{{2\sqrt 3 a}}{5}.c{\rm{os30}}^\circ \)

\( \Leftrightarrow A{M^2} = \frac{7}{{25}}{a^2}\)

\( \Leftrightarrow AM = \frac{{\sqrt 7 }}{5}a\).

Vậy \(AM = \frac{{\sqrt 7 }}{5}a\).

+) Diện tích tam giác \(ABM\) là:

\({S_{ABM}} = \frac{1}{2}.AB.BM.\sin \widehat {ABM} = \frac{1}{2}.a.\frac{{2\sqrt 3 a}}{5}.\sin 30^\circ = \frac{{\sqrt 3 }}{{10}}\) (đvdt).

Chu vi tam giác \(ABM\) là:

\(p = AB + AM + BM = a + \frac{{\sqrt 7 }}{5}a + \frac{{2\sqrt 3 }}{5}a = \frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a\) (đvđd).

Bán kính đường tròn nội tiếp tam giác ABC là:

\(r = \frac{S}{p} = \left( {\frac{{\sqrt 3 }}{{10}}{a^2}} \right):\left( {\frac{{1 + \sqrt 7 + 2\sqrt 3 }}{5}a} \right) \approx 0,12a\).

Vậy bán kính đường tròn nội tiếp tam giác \(ABC\)\(0,12a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {CB} \);                                 
B. \(\overrightarrow {AC} \);                          
C. \(\overrightarrow {MN} \);    
D. \(\overrightarrow {BN} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Xét tam giác \(ABC\), có:

\(K\) là trung điểm \(AB\),

\(N\) là trung điểm \(AC\)

Suy ra \(KN\) là đường trung bình của tam giác \(ABC\)

\( \Rightarrow KN\parallel BC\)

Do đó vectơ \(\overrightarrow {KN} \) cùng phương với \(\overrightarrow {CB} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Giả sử sau \(1,2\) giờ thì tàu thứ nhất đến vị trí \(B\), tàu thứ hai đến được vị trí \(C\).

Sau \(1,2\) giờ:

Tàu thứ nhất đi được quãng đường \(AB\) dài: \(25\,\,.\,\,1,2 = 30\,\,\left( {km} \right)\).

Tàu thứ hai đi được quãng đường \(AC\) dài: \(35\,\,.\,\,1,2 = 42\,\,\left( {km} \right)\).

Xét tam giác ABC:

Áp dụng định lí cos trong tam giác ABC, ta được:

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)

\( \Leftrightarrow B{C^2} = {30^2} + {42^2} - 2.30.42.\cos \left( {50^\circ 35'} \right)\)

\( \Leftrightarrow B{C^2} \approx 1\,\,063,91\)

\( \Leftrightarrow BC \approx 32,62\).

Vậy sau 1,2 giờ thì khoảng cách giữa hai tàu khoảng \(32,62\,\,km\).

Câu 3

A. \(0\);                         
B. \(8\);                         
C. \( - 2\);                                
D. \[3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {BA} + \overrightarrow {CB} = \overrightarrow {CA} \);                                              
B. \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
C. \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \);                                              
D. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {1;\,\,5} \right)\); 
B. \(\left( { - 1;\,\,3} \right)\);                         
C. \(\left( {0;\,\,1} \right)\); 
D. \(\left( {1;\,\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Điều kiện cần để tứ giác \(ABCD\)\(AB\parallel CD\) là tứ giác \(ABCD\) là hình bình hành;
B. Điều kiện đủ để tứ giác \(ABCD\)\(AB\parallel CD\) là tứ giác \(ABCD\) là hình bình hành;
C. Tứ giác \(ABCD\)\(AB\parallel CD\) là điều kiện cần và đủ để tứ giác \(ABCD\) là hình bình hành;
D. Tứ giác \(ABCD\) là hình bình hành là điều kiện cần để \(AB\parallel CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP