Giải các phương trình sau
a) \(\sin \left( {3x - \frac{{7\pi }}{{12}}} \right) = \sin \left( { - x + \frac{\pi }{4}} \right)\);
b) \(\sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right) = 0\).
Giải các phương trình sau
a) \(\sin \left( {3x - \frac{{7\pi }}{{12}}} \right) = \sin \left( { - x + \frac{\pi }{4}} \right)\);
b) \(\sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right) = 0\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
a) \(\sin \left( {3x - \frac{{7\pi }}{{12}}} \right) = \sin \left( { - x + \frac{\pi }{4}} \right)\)\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{7\pi }}{{12}} = - x + \frac{\pi }{4} + k2\pi \\3x - \frac{{7\pi }}{{12}} = \pi - \left( { - x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{24}} + k\frac{\pi }{2}\\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.,k \in \mathbb{Z}\).
b) \(\sin 3x - \cos \left( {\frac{{3\pi }}{4} - x} \right) = 0\)\( \Leftrightarrow \cos \left( {\frac{\pi }{2} - 3x} \right) = \cos \left( {\frac{{3\pi }}{4} - x} \right)\)\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - 3x = \frac{{3\pi }}{4} - x + k2\pi \\\frac{\pi }{2} - 3x = - \frac{{3\pi }}{4} + x + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{8} + k\pi \\x = \frac{{5\pi }}{{16}} + k\frac{\pi }{2}\end{array} \right.,k \in \mathbb{Z}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \( - 1 \le \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 1\)\( \Leftrightarrow - 4 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \le 4\)\( \Leftrightarrow 6 \le 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10 \le 14\).
Số giờ có ánh sáng mặt trời nhiều nhất là 14 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \)
\( \Leftrightarrow t = 149 + 356k\).
Vì \(0 < t \le 365\) nên ngày có nhiều giờ có ánh sáng mặt trời nhất là ngày 149.
Số giờ có ít ánh sáng mặt trời nhất là 6 khi \(\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = - 1\)\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = - \frac{\pi }{2} + k2\pi \)
\( \Leftrightarrow t = - 29 + 356k\).
Vì \(0 < t \le 365\) nên ngày có ít giờ có ánh sáng mặt trời nhất là ngày 327.
Suy ra \(a = 149;b = 327\). Do đó \(a + b = 476\).
Trả lời: 476.
Lời giải
\(\sin 2x - \cos 2x - 5\sin x - \cos x + 3 = 0\)\( \Leftrightarrow 2\sin x\cos x - \cos x + 2{\sin ^2}x - 5\sin x + 2 = 0\)
\( \Leftrightarrow \cos x\left( {2\sin x - 1} \right) + \left( {\sin x - 2} \right)\left( {2\sin x - 1} \right) = 0\)\( \Leftrightarrow \left( {2\sin x - 1} \right)\left( {\cos x + \sin x - 2} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{1}{2}\\\cos x + \sin x - 2 = 0\end{array} \right.\).
TH1: \(\sin x = \frac{1}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).
Vì \(x \in \left[ { - 2\pi ;2\pi } \right]\) nên \(x = \frac{\pi }{6};x = - \frac{{11\pi }}{6}\); \(x = \frac{{5\pi }}{6};x = - \frac{{7\pi }}{6}\).
TH2: \(\cos x + \sin x - 2 = 0\)\( \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 2\)\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sqrt 2 \) (vô nghiệm).
Tổng các nghiệm là \(\frac{\pi }{6} + \left( { - \frac{{11\pi }}{6}} \right) + \frac{{5\pi }}{6} + \left( { - \frac{{7\pi }}{6}} \right) = - 2\pi \).
Suy ra \(a = - 2;b = 1\). Do đó \(a - b = - 3\).
Trả lời: −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.