Cho hàm số \(y = f\left( x \right) = \cos \left( { - x} \right)\) xác định trên tập D.
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
a) Tập xác định của hàm số là \(D = \mathbb{R}\).
b) \(y = f\left( x \right) = \cos x,\forall x \in D\).
c) \(f\left( x \right) = 1 \Leftrightarrow \cos \left( { - x} \right) = 1\)\( \Leftrightarrow \cos x = 1\)\( \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}\).
d) Vì \(x \in \left[ { - \pi ;6\pi } \right]\) nên \( - \pi \le k2\pi \le 6\pi \)\( \Leftrightarrow - \frac{1}{2} \le k \le 3\). Mà k Î ℤ nên \(k = 0;k = 1;k = 2;k = 3\).
Khi đó ta có các nghiệm \(x = 0;x = 2\pi ;x = 4\pi ;x = 6\pi \).
Do đó tổng các nghiệm của phương trình là \(12\pi \).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \( - 3 \le 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) \le 3\)\( \Leftrightarrow 11 \le 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) + 14 \le 17\).
Do đó mực nước của kênh cao nhất khi \(\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) = 1\)\( \Leftrightarrow \frac{{\pi t}}{4} + \frac{\pi }{3} = \frac{\pi }{2} + k2\pi \)\( \Leftrightarrow t = \frac{2}{3} + 8k\).
Thời gian ngắn nhất để mực nước của kênh cao nhất thì k = 0.
Do đó \(t = \frac{2}{3}\). Suy ra \(a = 2;b = 3 \Rightarrow ab = 6\).
Trả lời: 6.
Câu 2
Lời giải
Có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\left( {\frac{{ - 4}}{5}} \right)^2} = \frac{9}{{25}}\).
Mà \(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{3}{5}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
