Phần 3. Trắc nghiệm trả lời ngắn
Hằng ngày mực nước của con kênh lên xuống theo thủy triều, độ sâu L (tính theo đơn vị mét) của mực mước trong kênh theo thời gian t (giờ) được cho bởi công thức \(L = 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) + 14\). Thời gian ngắn nhất để mực nước của kênh cao nhất là \(t = \frac{a}{b}\) (giờ) với \(\frac{a}{b}\) là phân số tối giản. Tính giá trị của \(a \cdot b\).
Phần 3. Trắc nghiệm trả lời ngắn
Hằng ngày mực nước của con kênh lên xuống theo thủy triều, độ sâu L (tính theo đơn vị mét) của mực mước trong kênh theo thời gian t (giờ) được cho bởi công thức \(L = 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) + 14\). Thời gian ngắn nhất để mực nước của kênh cao nhất là \(t = \frac{a}{b}\) (giờ) với \(\frac{a}{b}\) là phân số tối giản. Tính giá trị của \(a \cdot b\).
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
Ta có \( - 3 \le 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) \le 3\)\( \Leftrightarrow 11 \le 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) + 14 \le 17\).
Do đó mực nước của kênh cao nhất khi \(\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) = 1\)\( \Leftrightarrow \frac{{\pi t}}{4} + \frac{\pi }{3} = \frac{\pi }{2} + k2\pi \)\( \Leftrightarrow t = \frac{2}{3} + 8k\).
Thời gian ngắn nhất để mực nước của kênh cao nhất thì k = 0.
Do đó \(t = \frac{2}{3}\). Suy ra \(a = 2;b = 3 \Rightarrow ab = 6\).
Trả lời: 6.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(x \in \left( {\frac{\pi }{2};\pi } \right)\) nên \(\cos x < 0\).
Mà \({\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\) \( \Rightarrow \cos x = - \frac{{2\sqrt 2 }}{3}\).
\(A = \cos \left( {\frac{\pi }{4} - x} \right) = \cos \frac{\pi }{4}\cos x + \sin \frac{\pi }{4}\sin x\)\( = \frac{{\sqrt 2 }}{2}.\frac{{ - 2\sqrt 2 }}{3} + \frac{{\sqrt 2 }}{2}.\frac{1}{3} \approx - 0,4\).
Trả lời: −0,4.
Lời giải
\(\cos \left( {\frac{\pi }{4} - x} \right) + 1 = 0\)\( \Leftrightarrow \cos \left( {\frac{\pi }{4} - x} \right) = - 1\)\( \Leftrightarrow \frac{\pi }{4} - x = \pi + k2\pi \)\( \Leftrightarrow x = \frac{{ - 3\pi }}{4} + k2\pi \).
Vì nghiệm của phương trình là nghiệm dương nhỏ nhất nên \(k = 1\).
Do đó \(x = \frac{{5\pi }}{4}\). Suy ra \(a = 5;b = 4\). Vậy T = 5 + 4 = 9.
Trả lời: 9.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
