Câu hỏi:

22/12/2025 42 Lưu

Từ một hộp chứa \(10\) quả cầu màu đỏ và \(5\) quả cầu màu xanh, lấy ngẫu nhiên đồng thời \(3\) quả cầu. Xác suất để lấy được \(3\) quả cầu màu xanh bằng

A. \(\frac{{24}}{{91}}\).  
B. \(\frac{{12}}{{91}}\).                                     
C. \(\frac{2}{{91}}\).  
D. \(\frac{1}{{12}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = C_{15}^3 = 455\).

Gọi biến cố \(A\): “Lấy được \(3\) quả cầu màu xanh”. Ta có \(n\left( A \right) = C_5^3 = 10\).

Xác suất để lấy được \(3\) quả cầu màu xanh bằng \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{10}}{{455}} = \frac{2}{{91}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Yêu cầu bài toán \( \Leftrightarrow  - 0,02{x^2} + 0,4x \ge 1,5\)\( \Leftrightarrow 5 \le x \le 15\).

Vậy quả bóng đạt độ cao lớn hơn hay bằng \(1,5\) mét trong khoảng \(15 - 5 = 10\) ( giây).

Lời giải

a) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

Chọn \({a_1}({a_1} \ne 0)\): có \(6\) cách chọn

Ta có: \({a_2};{a_3};{a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Vậy có \(6.6!\) số

b) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

TH1: Chọn \({a_1};{a_2};{a_3} \in \left\{ {1;2;3} \right\}\),\(({a_1} \ne 0)\)có \(3!\) cách chọn

Chọn \({a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 4 phần tử còn lại: \(4!\) cách chọn

Do vậy ta được \(3!\).\(4!\)=144 số

TH2: Các số \(1;2;3\) nằm ở ba trong 4 vị trí \({a_4};{a_5};{a_6};{a_7}\) có: \(4.3.2 = 24\) cách sắp xếp

Chọn \({a_1} \in \left\{ {4;5;6} \right\}\) có: 3 cách chọn

Còn 3 vị trí còn lại có số cách chọn là số hoán vị của 3 phần tử còn lại từ tập \(S\): \(3!\) cách chọn

Do vậy ta có: \(24.3.3! = 432\) số

Tổng cộng có 576 số

c) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6} \in S\backslash \left\{ 0 \right\}\)

Ta có: \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Do vậy ta có \(6!\) số

d) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

TH1: Chọn \({a_7} = 0\): có 1 cách chọn

Chọn \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Do vậy ta có \(6!\) số

TH2: Chọn \({a_7} \in \left\{ {2,4,6} \right\}\): có 3 cách chọn

Chọn \({a_1}({a_1} \ne 0;\,{a_1} \ne {a_7})\): có 5 cách chọn

Chọn \({a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 5 phần tử: \(5!\)

Do vậy ta có: \(3.5.5!\) số

Vậy tổng có: \(6! + 3.5.5!\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{3}\).            
B. \(\frac{1}{6}\).          
C. \(\frac{{35}}{{66}}\).           
D. \(\frac{3}{{55}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP