Câu hỏi:

22/12/2025 46 Lưu

Trong mặt phẳng với hệ tọa độ \[Oxy\], một điểm M chuyển động quanh điểm A trên quỹ đạo elip có phương trình chính tắc là \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\), trong đó điểm A là một tiêu điểm có hoành độ dương. Khi điểm M này ở vị trí cách đều hai trục tọa độ và có hoành độ, tung độ là những số dương thì nó cách điểm A một khoảng là bao nhiêu, làm tròn đến hàng phần mười?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(a = 5,\;b = 4\) nên \(c = \sqrt {{a^2} - {b^2}}  = 3\).

Gọi tiêu điểm có hoành độ dương là \({F_2}\) thì \({F_2} = \left( {3;0} \right)\).

Khi điểm M cách đều hai trục tọa độ và có hoành độ, tung độ là những số dương, tức là

\(x = y > 0\), ta thay vào phương trình elip để tìm \(x\): \(\frac{{{x^2}}}{{25}} + \frac{{{x^2}}}{{16}} = 1 \Leftrightarrow {x^2} = \frac{{400}}{{41}} \Leftrightarrow x = \frac{{20}}{{\sqrt {41} }}\).

Vị trí lúc này là \(M\left( {\frac{{20}}{{\sqrt {41} }};\frac{{20}}{{\sqrt {41} }}} \right)\).

Bây giờ, ta tính khoảng cách từ M tới A: \(r = MA = \sqrt {{{\left( {\frac{{20}}{{\sqrt {41} }} - 3} \right)}^2} + {{\left( {\frac{{20}}{{\sqrt {41} }}} \right)}^2}}  \approx 3,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Yêu cầu bài toán \( \Leftrightarrow  - 0,02{x^2} + 0,4x \ge 1,5\)\( \Leftrightarrow 5 \le x \le 15\).

Vậy quả bóng đạt độ cao lớn hơn hay bằng \(1,5\) mét trong khoảng \(15 - 5 = 10\) ( giây).

Lời giải

a) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

Chọn \({a_1}({a_1} \ne 0)\): có \(6\) cách chọn

Ta có: \({a_2};{a_3};{a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Vậy có \(6.6!\) số

b) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

TH1: Chọn \({a_1};{a_2};{a_3} \in \left\{ {1;2;3} \right\}\),\(({a_1} \ne 0)\)có \(3!\) cách chọn

Chọn \({a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 4 phần tử còn lại: \(4!\) cách chọn

Do vậy ta được \(3!\).\(4!\)=144 số

TH2: Các số \(1;2;3\) nằm ở ba trong 4 vị trí \({a_4};{a_5};{a_6};{a_7}\) có: \(4.3.2 = 24\) cách sắp xếp

Chọn \({a_1} \in \left\{ {4;5;6} \right\}\) có: 3 cách chọn

Còn 3 vị trí còn lại có số cách chọn là số hoán vị của 3 phần tử còn lại từ tập \(S\): \(3!\) cách chọn

Do vậy ta có: \(24.3.3! = 432\) số

Tổng cộng có 576 số

c) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6} \in S\backslash \left\{ 0 \right\}\)

Ta có: \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Do vậy ta có \(6!\) số

d) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)

TH1: Chọn \({a_7} = 0\): có 1 cách chọn

Chọn \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)

Do vậy ta có \(6!\) số

TH2: Chọn \({a_7} \in \left\{ {2,4,6} \right\}\): có 3 cách chọn

Chọn \({a_1}({a_1} \ne 0;\,{a_1} \ne {a_7})\): có 5 cách chọn

Chọn \({a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 5 phần tử: \(5!\)

Do vậy ta có: \(3.5.5!\) số

Vậy tổng có: \(6! + 3.5.5!\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{3}\).            
B. \(\frac{1}{6}\).          
C. \(\frac{{35}}{{66}}\).           
D. \(\frac{3}{{55}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP