Trong mặt phẳng với hệ tọa độ \[Oxy\], một điểm M chuyển động quanh điểm A trên quỹ đạo elip có phương trình chính tắc là \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\), trong đó điểm A là một tiêu điểm có hoành độ dương. Khi điểm M này ở vị trí cách đều hai trục tọa độ và có hoành độ, tung độ là những số dương thì nó cách điểm A một khoảng là bao nhiêu, làm tròn đến hàng phần mười?
Quảng cáo
Trả lời:
Ta có: \(a = 5,\;b = 4\) nên \(c = \sqrt {{a^2} - {b^2}} = 3\).
Gọi tiêu điểm có hoành độ dương là \({F_2}\) thì \({F_2} = \left( {3;0} \right)\).
Khi điểm M cách đều hai trục tọa độ và có hoành độ, tung độ là những số dương, tức là
\(x = y > 0\), ta thay vào phương trình elip để tìm \(x\): \(\frac{{{x^2}}}{{25}} + \frac{{{x^2}}}{{16}} = 1 \Leftrightarrow {x^2} = \frac{{400}}{{41}} \Leftrightarrow x = \frac{{20}}{{\sqrt {41} }}\).
Vị trí lúc này là \(M\left( {\frac{{20}}{{\sqrt {41} }};\frac{{20}}{{\sqrt {41} }}} \right)\).
Bây giờ, ta tính khoảng cách từ M tới A: \(r = MA = \sqrt {{{\left( {\frac{{20}}{{\sqrt {41} }} - 3} \right)}^2} + {{\left( {\frac{{20}}{{\sqrt {41} }}} \right)}^2}} \approx 3,1\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Yêu cầu bài toán \( \Leftrightarrow - 0,02{x^2} + 0,4x \ge 1,5\)\( \Leftrightarrow 5 \le x \le 15\).
Vậy quả bóng đạt độ cao lớn hơn hay bằng \(1,5\) mét trong khoảng \(15 - 5 = 10\) ( giây).
Lời giải
a) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)
Chọn \({a_1}({a_1} \ne 0)\): có \(6\) cách chọn
Ta có: \({a_2};{a_3};{a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)
Vậy có \(6.6!\) số
b) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)
TH1: Chọn \({a_1};{a_2};{a_3} \in \left\{ {1;2;3} \right\}\),\(({a_1} \ne 0)\)có \(3!\) cách chọn
Chọn \({a_4};{a_5};{a_6};{a_7}\) có số cách chọn là số hoán vị của 4 phần tử còn lại: \(4!\) cách chọn
Do vậy ta được \(3!\).\(4!\)=144 số
TH2: Các số \(1;2;3\) nằm ở ba trong 4 vị trí \({a_4};{a_5};{a_6};{a_7}\) có: \(4.3.2 = 24\) cách sắp xếp
Chọn \({a_1} \in \left\{ {4;5;6} \right\}\) có: 3 cách chọn
Còn 3 vị trí còn lại có số cách chọn là số hoán vị của 3 phần tử còn lại từ tập \(S\): \(3!\) cách chọn
Do vậy ta có: \(24.3.3! = 432\) số
Tổng cộng có 576 số
c) Đúng: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6} \in S\backslash \left\{ 0 \right\}\)
Ta có: \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)
Do vậy ta có \(6!\) số
d) Sai: Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \) trong đó \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6};{a_7} \in S\)
TH1: Chọn \({a_7} = 0\): có 1 cách chọn
Chọn \({a_1};{a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 6 phần tử: \(6!\)
Do vậy ta có \(6!\) số
TH2: Chọn \({a_7} \in \left\{ {2,4,6} \right\}\): có 3 cách chọn
Chọn \({a_1}({a_1} \ne 0;\,{a_1} \ne {a_7})\): có 5 cách chọn
Chọn \({a_2};{a_3};{a_4};{a_5};{a_6}\) có số cách chọn là số hoán vị của 5 phần tử: \(5!\)
Do vậy ta có: \(3.5.5!\) số
Vậy tổng có: \(6! + 3.5.5!\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
