Câu hỏi:

12/01/2026 58 Lưu

Số bài tập về nhà môn Toán đã làm của \[40\] học sinh trong lớp \[9A\] vào tuần trước được thống kê trong bảng tần số sau:

Số bài tập đã làm

\[6\]

\(7\)

\(8\)

\(9\)

\(10\)

Tần số

\(8\)

\(10\)

\(12\)

\(6\)

\(4\)

Lập bảng tần số tương đối của bảng số liệu trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
 Bảng tần số tương đối
Số bài tập đã làm 6 7 8 9 10
Tần số tương đối (%) 20 25 30 15 10

                Không gian mẫu \(\Omega  = \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9;\,\,10;\,\,11;\,\,12} \right\}\)

Số phần tử của tập \(\Omega \) là \(12\).

Các kết quả thuận lợi cho biến cố A là : \(3,\,\,6,\,\,9,\,\,12\). Có \(4\)kết quả.

Xác suất của biến cố A là \(P\left( A \right) = \frac{4}{{12}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Chứng minh tứ giác \(OBMK\) nội tiếp.

\(\widehat {KMB} = \widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đương tròn)

\(\widehat {KOB} = 90^\circ \) (vì hai đường kính \(AB\) và \(CD\) vuông góc với nhau)

Do đó tam giác \(BMK\) và tam giác \(OBK\) nội tiếp đường tròn đường kính \(BM\)

Suy ra bốn điểm \(B\), \(O\), \(M\), \(K\) thuộc đường tròn đường kính \(BK\).

Vậy tứ giác \(OBMK\) nội tiếp đường tròn đường kính \(BK\).

b) Chứng minh rằng \(DI.DM = 2{R^2}\).

\(\widehat {CMD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Xét tam giác \(OID\) vuông tại \(O\) và tam giác \(MCD\) vuông tại \(M\) có \(\widehat {CDM}\) chung

Suy ra  (g.g)

Nên \[\frac{{DI}}{{DC}} = \frac{{DO}}{{DM}}\]

Do đó \(DI.DM = 2R.R = 2{R^2}\)

c) Tia phân giác của góc \(IOM\)cắt \(MI\) tại điểm \(E\). Chứng minh rằng \(\tan \widehat {ODI} = \frac{{EI}}{{EM}}\).

Xét tam giác \(OMI\) có \(OE\) là tia phân giác \(\widehat {MOI}\) nên \[\frac{{EI}}{{EM}} = \frac{{OI}}{{OM}}\,\,\,\left( 1 \right)\]

Xét tam giác \(OID\) vuông tại \(O\) nên \(\tan \widehat {ODI} = \frac{{OI}}{{OD}} = \frac{{OI}}{{OM}}\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta suy ra: \(\tan \widehat {ODI} = \frac{{EI}}{{EM}}\)

d) Cho \(IB = 2.IO\). Tính tỉ số \(\frac{{MB}}{{MC}}\).

Ta có  (theo câu b)

Suy ra \[\frac{{IO}}{{MC}} = \frac{{DO}}{{MD}}\] nên \[MC = \frac{{IO.MD}}{{DO}}\,\,\,\left( 3 \right)\]

Xét tam giác \(DIB\) và tam giác \(DBM\) có

\(\widehat {BDM}\): góc chung

\(\widehat {IBD} = \widehat {BMD}\) (2 góc nội tiếp chắn hai cung \(AD\) và \(BD\) bằng nhau của \(\left( O \right)\))

Suy ra  (g.g)

Nên \[\frac{{IB}}{{BM}} = \frac{{DB}}{{MD}}\]

Do đó \[MB = \frac{{IB.MD}}{{DB}}\,\,\,\left( 4 \right)\]

Từ (3) và (4) ta suy ra: \(\frac{{MB}}{{MC}} = \frac{{IB.MD}}{{DB}} \cdot \frac{{DO}}{{IO.MD}} = \frac{{2IO.R}}{{IO.R\sqrt 2 }} = \sqrt 2 \).

Lời giải

 Từ giả thiết suy ra \(A\left( {3;\,\, - 8} \right)\)thuộc parabol \(y = a{x^2}\)

Suy ra \( - 8 = a.\,\,{3^2}\) hay \(a = \frac{{ - 8}}{9}\) (thoả mãn a < 0).

Phương trình parabol là: \(y =  - \frac{8}{9}{x^2}\)

Vì \(MN = 3\,\,m\) nên hoành độ điểm M là \({x_M} = \frac{3}{2}\) suy ra tung độ của M:\({y_M} =  - \frac{8}{9}.\,\,{\left( {\frac{3}{2}} \right)^2} =  - 2\).

Khoảng cách từ dây đèn đến mặt sân bằng \(8 - 2 = 6\,\,\left( m \right)\)