Câu hỏi:
11/01/2021 8,035Độ dài các cạnh của một tam giác ABC lập thành một cấp số nhân. Tam giác ABC có tối đa mấy góc không vượt qua 60°?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
Giả sử ba cạnh của tam giác ABC là a,b,c.
Không mất tính tổng quát, ta giả sử 0 < a ≤b ≤c,
Nếu chúng tạo thành cấp số nhân thì theo tính chất của cấp số nhân ta có: b2=ac.
Theo định lý hàm côsin Ta có:
Mặt khác
Vậy góc ,mà , cho nên tam giác ABC có hai góc không quá 60°
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cấp số nhân dương có 4 số hạng, công bội q bằng 1/4 lần số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm tích các số hạng cấp số nhân đó?
Câu 4:
Cho tam giác ABC cân tại A, có đáy BC, đường cao AH, cạnh bên AB theo thứ tự đó lập thành một cấp số nhân. Hãy tính công bội q của cấp số nhân đó.
Câu 5:
Cho ba số phân biệt tạo thành một cấp số nhân mà tổng của chúng bằng 93. Ta có thể sắp xếp chúng (theo thứ tự của cấp số nhân kế trên) như là số hạng thứ nhất, thứ hai và thứ bảy của một cấp số cộng. Tìm tích của 3 số đó.
về câu hỏi!