Câu hỏi:
12/07/2024 1,008Cho hàm số:
a) Xét tính đơn điệu của hàm số.
b) Chứng minh rằng với mọi m, tiệm cận ngang của đồ thị (Cm) của hàm số đã cho luôn đi qua điểm
c) Biện luận theo m số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất.
d) Vẽ đồ thị của hàm số:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Xét hàm số:
a) TXĐ: R \ {−3m/2}
+) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng
+) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng
+) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4
b) Ta có:
nên với mọi m, đường thẳng y = -1/2 là tiệm cận ngang và đi qua
c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:
Ta có:
⇔ 2 + (3m + 1)x – 4 = 0 ⇔ 2 + (3m + 1) x – 4 = 0 với x ≠ −3m/2
+) Thay x = −3m/2 vào (*), ta có:
Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.
Ta có: Δ = + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.
d) Ta có:
Trước hết, ta vẽ đồ thị (C) của hàm số
TXĐ: D = R \ {−3/2}.
Vì
với mọi nên hàm số nghịch biến trên các khoảng
Bảng biến thiên:
Tiệm cận đứng x = −3/2
Tiệm cận ngang y = −1/2
Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)
Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình tiếp tuyến của đồ thị hàm số y = - 2 tại điểm có hoành độ x = -2 là:
A. y = -24x + 40 B. y = 24x - 40
C. y = -24x - 40 D. y = -24x
Câu 2:
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:
y = − + 3x + 1
b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:
y = − 3x − 4
c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:
= 3x + m
d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng
Câu 3:
Cho hàm số:
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho
b) Tìm các giá trị của tham số m để phương trình – 6 + m = 0 có 3 nghiệm thực phân biệt.
Câu 4:
Phương trình tiếp tuyến của đồ thị hàm số y = - 2 - 3 song song với đường thẳng y = 24x - 1 là:
A. y = 24x - 43 B. y = -24x - 43
C. y = 24x + 43 D. y = 24x + 1
Câu 5:
Cho hàm số y = 2 − 4 (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
b) Với giá trị nào của m, phương trình | − 2| = m có đúng 6 nghiệm thực phân biệt?
(Đề thi đại học năm 2009; khối B)
Câu 6:
Biện luận theo k số nghiệm của phương trình:
a) = 2|x − k|
b) .(2 − x) = k
Câu 7:
Cho hàm số:
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của (C) tại các giao điểm của nó với trục Ox.
c) Biện luận theo k số giao điểm của (C) với đồ thị (P) của hàm số: y = k – 2.
về câu hỏi!