Câu hỏi:

12/07/2024 4,010

Cho đường tròn (O) và điểm A ngoài (O). Qua A kẻ các tiếp tuyên AB, AC với (O) trong đó B, C là các tiếp điểm. Lấy M là điểm thuộc cung nhỏ BC. Tiếp tuyến qua M với (O) cắt AB, AC lần lượt tại D và E. Chứng minh:

a, Chu vi tam giác ADE bằng 2AB

b, DOE^=12BOC^

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, PADEAD+DE = EA = AD+DM+ME+AE = 2AB

b, DOM^=12BOM^MOE^=12MOC^

=> BOC^=2DOE^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, HS tự làm

b, Ta có OPAM, BMAM => BM//OP

c, chứng minh ∆AOP = ∆OBN => OP=BN

lại có BN//OP do đó OPNB là hình bình hành

d, Ta có ONPI, PMJO mà PMON = I => I là trực tâm ∆POJ => JIPO(1)

Chứng minh PAON hình chữ nhật => K trung điểm PO

Lại có APO^=OPI^=IOP^ => ∆IPO cân tại I => IKPO (2)

Từ (1),(2) => J,I,K thẳng hàng

Lời giải

a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,Ođường tròn bán kính OC2

b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM

c, SACDB=AC+BDAB2=AD.AB2

=> SACDB nhỏ nhất khi CD có độ dài nhỏ nhất

Hay M nằm chính giữa cung AB

d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD

ta chứng minh được CNNB=CMMD => MN//BD => MNAB