Câu hỏi:
12/07/2024 5,923Cho đường tròn (O) đường kính CD = 2R, M là điểm thuộc (O) sao cho MC < MD. Gọi K là trung điểm của CM, tia OK cắt tiếp tuyến Cx tại A
a, Chứng minh OA // MD. Từ đó suy ra MA là tiếp tuyến của (O)
b, Gọi B là giao điểm của AM và tiếp tuyến Dy của (O), H là giao điểm của OB và MD. Khi M thay đổi, chứng minh (KO.KA + HO.HB) không phụ thuộc vị trí của M
c, Giả sử CM = R, đường thẳng AB cắt CD tại S. Kẻ CEAB tại E. Chứng minh AE.SM = AM. SE
d, Khi M thay đổi, chứng minh giao điểm của AD và CB luôn thuộc một đường cố định
Câu hỏi trong đề: Chương 2 - Ôn tập chương 2 !!
Quảng cáo
Trả lời:
a, HS tự chứng minh
b, Chứng minh KA .KO + HB.HO = không đổi
c, Với giả thiết này thì ∆CMO đều và
=>
Dùng tính chất phân giác trong và ngoài của được đpcm
d, Gọi giao điểm của CB và AD là I. Do AC//BD
Gọi giao điểm của MI với CD là G , chứng minh tương tự trên ta được IM=IG. Vậy I là trung điểm của MG => I thuộc đường nối các trung điểm của đoạn vuông góc từ M xuống CD
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, ∆MAO = ∆PBO => MO = OP => ∆MNP cân
Vì đường cao NO đồng thời là đường trung tuyến
b,
= => OI = R
=> MN là tiếp tuyến của (O)
c, AM.BN = MI.IN =
d,
=> min
<=> <=> AM = R
Lời giải
a, Chứng minh ∆MEF:∆MOA
b, ∆MEF:∆MOA mà AO=OM => ME=EF
c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng
d, FA.SM = 2
e, OH.MH ≤
=> M ở chính giữa cung AC
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.