Câu hỏi:
12/07/2024 7,980Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Ox và Oy. Đường tròn (I; OK) cắt tia Ox tại M (I nằm giữa O và M), đường tròn (K; OI) cắt tia Oy tại N (K nằm giữa O và N)
a, Chứng minh (I) và (K) luôn cắt nhau
b, Tiếp tuyến tại M của (I), tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông
c, Gọi A, B là các giao điểm của (I) và (K) trong đó B ở miền trong góc xOy. Chứng minh ba điểm A, B, C thẳng hàng
d, Giả sử I và K thứ tự di động trên các tia Ox và Oy sao cho OI + OK = a không đổi. Chứng minh đường thẳng AB luôn đi qua một điểm cố định
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KBMC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=>
mà
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một cát tuyến qua A cắt (O) ở M, cắt (O') ở N mà A ở giữa M và N. Từ A vẽ đường kính AOC và AO'D
a, Tứ giác CMND là hình gì?
b, Gọi E là trung điểm OO'. Với MA = NA, chứng minh MN là tiếp tuyến của đường tròn (E; EA)
Câu 2:
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi M là trung điểm của OO'. Đường thẳng qua A cắt các đường tròn (O) và (O’) lần lượt ở C và D
a, Khi CDMA, chứng minh AC = AD
b, Khi CD đi qua A và không vuông góc với MA
i, Vẽ đường kính AE của (O), AE cắt (O’) ở H. Vẽ đường kính AF của (O'), AF cắt (O) ở G. Chứng minh AB, EG, FH đồng quy
ii, Tìm vị trí của CD để đoạn CD có độ dài lớn nhất?
Câu 3:
Cho hai đường tròn (O) và (O') cắt nhau tại A và B, trong đó OA là tiếp tuyến của đường tròn (O'). Tính độ dài dây cung AB biết OA = 20 cm và O'A = 15 cm
về câu hỏi!