Câu 4:
Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Ox và Oy. Đường tròn (I; OK) cắt tia Ox tại M (I nằm giữa O và M), đường tròn (K; OI) cắt tia Oy tại N (K nằm giữa O và N)
a, Chứng minh (I) và (K) luôn cắt nhau
b, Tiếp tuyến tại M của (I), tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông
c, Gọi A, B là các giao điểm của (I) và (K) trong đó B ở miền trong góc xOy. Chứng minh ba điểm A, B, C thẳng hàng
d, Giả sử I và K thứ tự di động trên các tia Ox và Oy sao cho OI + OK = a không đổi. Chứng minh đường thẳng AB luôn đi qua một điểm cố định